Home
Class 12
MATHS
If d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a...

If `d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a^(x+1)/(1+b^(x))loga`, find the value of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will differentiate the given expression and then equate it to the right-hand side to find the values of \( a \) and \( b \). ### Step 1: Define the function Let: \[ u = \tan^{-1}\left(\frac{2^{x+1}}{1 - 4^x}\right) \] ### Step 2: Simplify the argument of the arctangent Notice that: \[ 4^x = (2^2)^x = (2^x)^2 \] Thus, we can rewrite the expression: \[ u = \tan^{-1}\left(\frac{2 \cdot 2^x}{1 - (2^x)^2}\right) \] ### Step 3: Use the double angle formula Using the identity for the tangent of a double angle: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] we can set \( \tan(\theta) = 2^x \). Therefore: \[ u = \tan^{-1}(\tan(2\theta)) = 2\theta \] ### Step 4: Express \( \theta \) in terms of \( x \) Since \( \theta = \tan^{-1}(2^x) \), we have: \[ u = 2 \tan^{-1}(2^x) \] ### Step 5: Differentiate \( u \) Now we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(2^x)) \] Using the chain rule: \[ \frac{d}{dx}(\tan^{-1}(2^x)) = \frac{1}{1 + (2^x)^2} \cdot \frac{d}{dx}(2^x) = \frac{1}{1 + 4^x} \cdot (2^x \ln(2)) \] Thus, \[ \frac{du}{dx} = 2 \cdot \frac{2^x \ln(2)}{1 + 4^x} \] ### Step 6: Set the derivative equal to the right-hand side We have: \[ \frac{du}{dx} = \frac{2^{x+1} \ln(2)}{1 + 4^x} \] According to the problem, this is equal to: \[ \frac{a^{x+1}}{1 + b^x \log a} \] ### Step 7: Compare both sides From the expressions, we can equate: \[ \frac{2^{x+1} \ln(2)}{1 + 4^x} = \frac{a^{x+1}}{1 + b^x \log a} \] ### Step 8: Identify \( a \) and \( b \) To find \( a \) and \( b \), we can compare coefficients: 1. From the numerator, we see that \( a^{x+1} = 2^{x+1} \ln(2) \), which leads us to conclude \( a = 2 \) and \( \ln(2) = 1 \). 2. From the denominator, \( 1 + 4^x \) can be rewritten as \( 1 + (2^2)^x = 1 + (b^x \log a) \). This implies \( b = 4 \). ### Final Values Thus, we find: \[ a = 2, \quad b = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=

(d)/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

d/(dx){tan^(-1)((cosx)/(1+sinx))}e q u a l 1/2 (b) x (c) (1-x^2)/(1+x^2) (d) 1

Differentiate tan^(-1){(2^(x+1))/(1-4^x)} , -oo < x < 0 with respect to x

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

Differentiate tan^(-1)((2a^x)/(1-a^(2x))), agt1,-ooltxlt0 with respect to x

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).