Home
Class 12
MATHS
Evaluate inte^(3logx)(x^(4)+1)^(-1)dx...

Evaluate `inte^(3logx)(x^(4)+1)^(-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int e^{3 \log x} (x^4 + 1)^{-1} \, dx, \] we can follow these steps: ### Step 1: Simplify the Expression We start by simplifying \( e^{3 \log x} \). Using the property of logarithms, we know that \( e^{\log a} = a \). Therefore, we can rewrite \( e^{3 \log x} \) as: \[ e^{3 \log x} = (e^{\log x})^3 = x^3. \] So, the integral becomes: \[ \int \frac{x^3}{x^4 + 1} \, dx. \] ### Step 2: Substitution Next, we can use substitution to simplify the integral further. Let: \[ t = x^4 + 1. \] Now, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = 4x^3 \implies dt = 4x^3 \, dx \implies dx = \frac{dt}{4x^3}. \] ### Step 3: Substitute in the Integral Now, we substitute \( t \) and \( dx \) into the integral: \[ \int \frac{x^3}{t} \cdot \frac{dt}{4x^3} = \int \frac{1}{4t} \, dt. \] ### Step 4: Integrate Now we can integrate: \[ \int \frac{1}{4t} \, dt = \frac{1}{4} \ln |t| + C, \] where \( C \) is the constant of integration. ### Step 5: Substitute Back Finally, we substitute back \( t = x^4 + 1 \): \[ \frac{1}{4} \ln |x^4 + 1| + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int e^{3 \log x} (x^4 + 1)^{-1} \, dx = \frac{1}{4} \ln |x^4 + 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(logx)/(x^3)\ dx

Evaluate: int(logx)/(x^2)\ dx

Evaluate: int_1^2(logx)/(x)dx

Evaluate: int(logx)/x\ dx

Evaluate: int_0^1logx dx

Evaluate: int(3x)/(1+2x^4)dx

Evaluate: int_1^2(logx)/(x^2)dx

Evaluate: int(logx^2)/(x)dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate int \logx/x\dx