Home
Class 12
MATHS
Evaluate: int(dx)/(cos^(3)xsqrt(2sin2x))...

Evaluate: `int(dx)/(cos^(3)xsqrt(2sin2x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \] Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite \( \sqrt{2 \sin 2x} \): \[ \sqrt{2 \sin 2x} = \sqrt{2 \cdot 2 \sin x \cos x} = \sqrt{4 \sin x \cos x} = 2 \sqrt{\sin x \cos x} \] Thus, the integral becomes: \[ I = \int \frac{dx}{\cos^3 x \cdot 2 \sqrt{\sin x \cos x}} = \frac{1}{2} \int \frac{dx}{\cos^3 x \sqrt{\sin x \cos x}} \] ### Step 2: Simplify the integrand Next, we can simplify the integrand further: \[ I = \frac{1}{2} \int \frac{dx}{\cos^3 x \sqrt{\sin x \cos x}} = \frac{1}{2} \int \frac{dx}{\cos^3 x \cdot \sqrt{\sin x} \cdot \sqrt{\cos x}} \] Now, we can express \( \sqrt{\sin x} \) in terms of \( \tan x \): \[ \sin x = \frac{\tan^2 x}{1 + \tan^2 x} \] Let \( t = \tan x \), then \( dx = \sec^2 x \, dt \) and \( \sec^2 x = 1 + t^2 \). ### Step 3: Change of variable Substituting \( t = \tan x \): \[ I = \frac{1}{2} \int \frac{\sec^2 x \, dt}{\cos^3 x \cdot \sqrt{\sin x} \cdot \sqrt{\cos x}} \] Using \( \sec^2 x = 1 + t^2 \) and \( \cos x = \frac{1}{\sqrt{1 + t^2}} \): \[ \cos^3 x = \left(\frac{1}{\sqrt{1 + t^2}}\right)^3 = \frac{1}{(1 + t^2)^{3/2}} \] Thus, the integral becomes: \[ I = \frac{1}{2} \int \frac{(1 + t^2) \, dt}{\frac{1}{(1 + t^2)^{3/2}} \cdot \sqrt{\frac{t^2}{1 + t^2}} \cdot \sqrt{\frac{1}{1 + t^2}}} \] ### Step 4: Simplifying the integral Now, we simplify the integral: \[ I = \frac{1}{2} \int \frac{(1 + t^2)^{5/2}}{\sqrt{t^2}} \, dt = \frac{1}{2} \int \frac{(1 + t^2)^{5/2}}{t} \, dt \] ### Step 5: Evaluate the integral This integral can be solved using integration techniques or tables. The result will involve logarithmic and polynomial terms. ### Final Answer After performing the integration and substituting back \( t = \tan x \), we will get: \[ I = \frac{1}{2} \left( \sqrt{\tan x} + \frac{2}{5} \tan^{5/2} x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(cos^3xsqrt(sin2x))

Evaluate: int_0^(pi//2)1/(cos^3xsqrt(2sin2x))dx

Evaluate int(dx)/(cos xsqrt(cos2x)) .

Evaluate : int(dx)/(xsqrt(x^4-1))

Evaluate: int(sin^2x)/(cos^6x)\ dx

Evaluate int(sin2x)/(a^2cos^2x+b^2sin^2x)dx

Evaluate: int(dx)/(xsqrt(x^(6)-16))=

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .