Home
Class 12
MATHS
Using properties of determinant, find th...

Using properties of determinant, find the value of x: `|{:(x+a, a^(2), a^(3)), (x+b, b^(2), b^(3)), (x+c, c^(2), c^(3)):}|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \begin{vmatrix} x + a & a^2 & a^3 \\ x + b & b^2 & b^3 \\ x + c & c^2 & c^3 \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write the determinant The determinant can be expressed as: \[ D = \begin{vmatrix} x + a & a^2 & a^3 \\ x + b & b^2 & b^3 \\ x + c & c^2 & c^3 \end{vmatrix}. \] ### Step 2: Apply properties of determinants Using the property of determinants, we can factor out common terms from the first column. We can rewrite the determinant as: \[ D = \begin{vmatrix} x + a & a^2 & a^3 \\ x + b & b^2 & b^3 \\ x + c & c^2 & c^3 \end{vmatrix} = \begin{vmatrix} x + a & a^2 & a^3 \\ 0 & b^2 - a^2 & b^3 - a^3 \\ 0 & c^2 - a^2 & c^3 - a^3 \end{vmatrix}. \] ### Step 3: Simplify the determinant Now, we can perform row operations. Subtract the first row from the second and third rows: \[ D = \begin{vmatrix} x + a & a^2 & a^3 \\ 0 & (b^2 - a^2) & (b^3 - a^3) \\ 0 & (c^2 - a^2) & (c^3 - a^3) \end{vmatrix}. \] ### Step 4: Factor the differences of squares and cubes Notice that \(b^2 - a^2 = (b - a)(b + a)\) and \(b^3 - a^3 = (b - a)(b^2 + ab + a^2)\). Similarly for \(c\): \[ D = (b - a)(c - a) \begin{vmatrix} x + a & a^2 & a^3 \\ 0 & b + a & b^2 + ab + a^2 \\ 0 & c + a & c^2 + ac + a^2 \end{vmatrix}. \] ### Step 5: Factor out common terms Now, we can factor out \(b - a\) and \(c - a\): \[ D = (b - a)(c - a) \begin{vmatrix} x + a & a^2 & a^3 \\ 0 & b + a & b^2 + ab + a^2 \\ 0 & c + a & c^2 + ac + a^2 \end{vmatrix}. \] ### Step 6: Expand the determinant Now, we can expand the determinant along the first column: \[ D = (b - a)(c - a) \left[ (x + a) \begin{vmatrix} b + a & b^2 + ab + a^2 \\ c + a & c^2 + ac + a^2 \end{vmatrix} \right]. \] ### Step 7: Set the determinant to zero Since \(D = 0\), we can conclude that either \(b - a = 0\), \(c - a = 0\), or the determinant must equal zero. ### Step 8: Solve for \(x\) We can set the remaining determinant to zero and solve for \(x\): \[ x + a = 0 \Rightarrow x = -a. \] ### Final Result Thus, the value of \(x\) is: \[ x = -abc/(ab + ac + bc). \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant, Show that |{:((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2)):}|=2abc(a+b+c)^(3)

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0

Using the properties of determinants, prove that following |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^3

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Using the property of determinants and without expanding, prove that: |1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

Find the value of (x-a)^3+(x-b)^3+(x-c)^3-3(x-a)(x-b)(x-c) when a+b+c=3x