Home
Class 12
MATHS
Using elementary transformation, find th...

Using elementary transformation, find the inverse of the matrix `({:(2, -1, 1), (-1, 2, -1), (1, -1, 2):})`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations until the left side becomes the identity matrix. The right side will then be the inverse of \( A \). ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ \left( \begin{array}{ccc|ccc} 2 & -1 & 1 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 1 & -1 & 2 & 0 & 0 & 1 \end{array} \right) \] 2. **First transformation**: \( R_1 \leftarrow R_1 + R_2 \) and \( R_2 \leftarrow R_2 + R_3 \): \[ \left( \begin{array}{ccc|ccc} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & -1 & 2 & 0 & 0 & 1 \end{array} \right) \] 3. **Second transformation**: \( R_3 \leftarrow R_3 - R_1 \): \[ \left( \begin{array}{ccc|ccc} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & -2 & 2 & -1 & -1 & 1 \end{array} \right) \] 4. **Third transformation**: \( R_3 \leftarrow R_3 + 2R_2 \): \[ \left( \begin{array}{ccc|ccc} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 4 & -1 & 1 & 3 \end{array} \right) \] 5. **Fourth transformation**: \( R_3 \leftarrow \frac{1}{4} R_3 \): \[ \left( \begin{array}{ccc|ccc} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{array} \right) \] 6. **Fifth transformation**: \( R_2 \leftarrow R_2 - R_3 \) and \( R_1 \leftarrow R_1 - R_2 \): \[ \left( \begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{array} \right) \] 7. **Final transformation**: \( R_1 \leftarrow R_1 + R_3 \): \[ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{array} \right) \] Now the left side is the identity matrix, and the right side gives us the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 7, 4]]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[2 ,1],[ 4, 2]]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[1, 3],[ 2, 7]]