Home
Class 12
MATHS
Evaluate: int(0)^(1) log (1/x-1)dx...

Evaluate: `int_(0)^(1) log (1/x-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{1} \log\left(\frac{1}{x} - 1\right) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ I = \int_{0}^{1} \log\left(\frac{1}{x} - 1\right) \, dx = \int_{0}^{1} \log\left(\frac{1 - x}{x}\right) \, dx \] This is achieved by simplifying \( \frac{1}{x} - 1 = \frac{1 - x}{x} \). ### Step 2: Use properties of logarithms Using the property of logarithms, we can separate the terms: \[ I = \int_{0}^{1} \left( \log(1 - x) - \log(x) \right) \, dx \] This can be split into two separate integrals: \[ I = \int_{0}^{1} \log(1 - x) \, dx - \int_{0}^{1} \log(x) \, dx \] ### Step 3: Evaluate the integrals Let’s denote: \[ I_1 = \int_{0}^{1} \log(1 - x) \, dx \quad \text{and} \quad I_2 = \int_{0}^{1} \log(x) \, dx \] #### Evaluating \( I_2 \): The integral \( I_2 \) can be evaluated using integration by parts: Let \( u = \log(x) \) and \( dv = dx \). Then \( du = \frac{1}{x} dx \) and \( v = x \). \[ I_2 = \left[ x \log(x) \right]_{0}^{1} - \int_{0}^{1} x \cdot \frac{1}{x} \, dx \] Evaluating the boundary term: \[ \left[ x \log(x) \right]_{0}^{1} = 1 \cdot \log(1) - \lim_{x \to 0} x \log(x) = 0 - 0 = 0 \] Thus, \[ I_2 = 0 - \int_{0}^{1} 1 \, dx = -1 \] #### Evaluating \( I_1 \): The integral \( I_1 \) can be evaluated using the substitution \( x = 1 - t \): \[ I_1 = \int_{0}^{1} \log(t) \, dt = -1 \quad \text{(by symmetry, similar to \( I_2 \))} \] ### Step 4: Combine the results Now we can combine the results: \[ I = I_1 - I_2 = (-1) - (-1) = -1 + 1 = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{1} \log\left(\frac{1}{x} - 1\right) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x log (1+2 x)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate: int_(0)^1(dx)/(1+x^2)

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

Evaluate : int_0^(pi/4)log(1+tanx)dx .

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate: int_0^pi log(1+cosx)dx