Home
Class 12
MATHS
Find the projection of the vector 7hat(i...

Find the projection of the vector `7hat(i)+hat(j)-4hat(k)" on " 2hat(i)+6hat(j)+3hat(k)`. a) `8/7` b) `7/8` c) `6/7` d) `4/7`

A

`8/7`

B

`7/8`

C

`6/7`

D

`4/7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \mathbf{A} = 7\hat{i} + \hat{j} - 4\hat{k} \) on the vector \( \mathbf{B} = 2\hat{i} + 6\hat{j} + 3\hat{k} \), we can follow these steps: ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) The dot product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (7)(2) + (1)(6) + (-4)(3) \] Calculating each term: - \( 7 \cdot 2 = 14 \) - \( 1 \cdot 6 = 6 \) - \( -4 \cdot 3 = -12 \) Now, summing these results: \[ \mathbf{A} \cdot \mathbf{B} = 14 + 6 - 12 = 8 \] ### Step 2: Calculate the magnitude of vector \( \mathbf{B} \) The magnitude of a vector \( \mathbf{B} \) is given by: \[ |\mathbf{B}| = \sqrt{(2)^2 + (6)^2 + (3)^2} \] Calculating each term: - \( (2)^2 = 4 \) - \( (6)^2 = 36 \) - \( (3)^2 = 9 \) Now, summing these results: \[ |\mathbf{B}| = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 \] ### Step 3: Calculate the projection of \( \mathbf{A} \) on \( \mathbf{B} \) The formula for the projection of vector \( \mathbf{A} \) on vector \( \mathbf{B} \) is given by: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} \] First, we need \( |\mathbf{B}|^2 \): \[ |\mathbf{B}|^2 = 7^2 = 49 \] Now substituting the values into the projection formula: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{8}{49} \mathbf{B} \] ### Step 4: Find the scalar projection The scalar projection of \( \mathbf{A} \) on \( \mathbf{B} \) is given by: \[ \text{Scalar Projection} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|} \] Substituting the known values: \[ \text{Scalar Projection} = \frac{8}{7} \] ### Final Answer Thus, the projection of the vector \( \mathbf{A} \) on \( \mathbf{B} \) is \( \frac{8}{7} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

Find the projection of the vector 7 hat i+ hat j-4 hat kin vec a=2 hat i+6 hat j+3 hat kdot

Find the projection of the vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat k

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot

Writhe the projection of the vector 7 hat i+ hat j-4 hat k on the vector 2 hat i+6 hat j+3 hat kdot

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Write the projection of the vector hat i+3 hat j+7 hat k on the vector 2 hat i-3 hat j+6 hat kdot

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)