Home
Class 12
MATHS
In sub-parts (i) and (ii) choose the cor...

In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.
Find `abs(vec(x))`, if for a unit vector `vec(a), (vec(x)-vec(a))*(vec(x)+vec(a))=12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{x}\) given the equation: \[ (\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12 \] where \(\vec{a}\) is a unit vector. ### Step-by-Step Solution: 1. **Expand the Dot Product**: We start by expanding the left-hand side of the equation using the distributive property of the dot product: \[ (\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} \] 2. **Simplify the Expression**: Notice that \(\vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} = 0\) (since dot product is commutative). Thus, we can simplify the expression: \[ \vec{x} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12 \] 3. **Use the Property of Unit Vector**: Since \(\vec{a}\) is a unit vector, we know that: \[ \vec{a} \cdot \vec{a} = 1 \] 4. **Substitute the Value**: Substitute \(\vec{a} \cdot \vec{a}\) into the equation: \[ \vec{x} \cdot \vec{x} - 1 = 12 \] 5. **Rearrange the Equation**: Rearranging gives us: \[ \vec{x} \cdot \vec{x} = 12 + 1 = 13 \] 6. **Find the Magnitude**: The magnitude of \(\vec{x}\) is given by: \[ |\vec{x}| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{13} \] ### Final Answer: \[ |\vec{x}| = \sqrt{13} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

In sub - part (i) and (ii) choose the correct option and in sub - part (iii) to (v) answer the questions as instructed. ~qto~p is equivalent to ……

In-sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed. Find the profit function when p =25 C (x) = 30 x - 150

find |vec x| , if for a unit vector vec a, (vec x- vec a)( vec x + vec a) =12

Find | vec x| , if for a unit vector vec a ,\ ( vec x- vec a)*( vec x+ vec a)=15.

Find | vec x| if for a unit vector vec a ,\ ( vec x- vec a)dot \ ( vec x+ vec a)=15.

Find | vec x| , if for a unit vector vec a ,\ ( vec x- vec a).( vec x+ vec a)=15.

In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed. For the data (1, 2), (2, 4), (3, 5) find the slope of regression equation x on y.

If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8 , then find |vec x|

If vec p is a unit vector and ( vec x-\ vec p).( vec x+\ vec p)=80 , then find | vec x|

Choose the correct option: The two vectors vec(A) and vec(B) are drawn from a common point and vec(C)=vec(A)+vec(B) then angle between vec(A) and vec(B) is