Home
Class 12
MATHS
For a 2^(nd) order determinant abs(A)=ab...

For a `2^(nd)` order determinant `abs(A)=abs(a_(ij))`, find `a_(12)A_(11)+a_(22)A_(21)`

A

`abs(A)`

B

0

C

1

D

`-abs(A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( a_{12} A_{11} + a_{22} A_{21} \) for a \( 2^{nd} \) order determinant \( A \) defined by the elements \( a_{ij} \). ### Step-by-step Solution: 1. **Define the 2x2 Matrix**: Let the matrix \( A \) be defined as: \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \] 2. **Calculate the Determinant**: The determinant \( |A| \) of the matrix \( A \) is given by: \[ |A| = a_{11} a_{22} - a_{12} a_{21} \] 3. **Find the Adjoint Elements**: For a \( 2 \times 2 \) matrix, the adjoint elements are defined as: \[ A_{11} = a_{22}, \quad A_{12} = -a_{12}, \quad A_{21} = -a_{21}, \quad A_{22} = a_{11} \] 4. **Substitute the Adjoint Elements**: Now, we substitute \( A_{11} \) and \( A_{21} \) into the expression \( a_{12} A_{11} + a_{22} A_{21} \): \[ a_{12} A_{11} + a_{22} A_{21} = a_{12} a_{22} + a_{22} (-a_{21}) = a_{12} a_{22} - a_{22} a_{21} \] 5. **Factor Out \( a_{22} \)**: We can factor out \( a_{22} \): \[ a_{12} a_{22} - a_{22} a_{21} = a_{22} (a_{12} - a_{21}) \] 6. **Conclusion**: Thus, the expression \( a_{12} A_{11} + a_{22} A_{21} \) simplifies to: \[ a_{22} (a_{12} - a_{21}) \] ### Final Result: The final result is: \[ a_{12} A_{11} + a_{22} A_{21} = a_{22} (a_{12} - a_{21}) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

On expanding by first row, the value of the determinant of 3xx3 square matrix A=[a_(i j)] is a_(11)C_(11)+a_(12)C_(12)+a_(13)C_(13)+a_(32)C_(32)+a_(33)C_(33) .

Find minors and cofactors of the elements a_(11), a_(21) in the determinant Delta=|a_(11)a_(12)a_(13)a_(21)a_(22)a_(23)a_(31)a_(32)a_(23)|

If a_(1),a_(2),a_(3),….,a_(r) are in GP, then prove that the determinant |(a_(r+1),a_(r+5),a_(r+9)),(a_(r+7),a_(r+11),a_(4+15)),(a_(r+11),a_(r+17),a_(r+21))| is independent of r .

For A 2 times 2 matrix, whose elements are given by: a_(ij)=1/2abs(-3i+j) . Find a_(11)+a_(22)

If a_(0), a_(1), a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

A matrix A=[a_(ij)]_(mxxn) is

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

Find minors and cofactors of the elements of the determinant |2-3 5 6 0 4 1 5-7| and verify that a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)=0

If A=[a_(i j)]=[(2, 3,-5),( 1, 4, 9),( 0, 7,-2)] and B=[b_(i j)]=[(2,-1),(-3, 4),( 1, 2)] then find a_(22)+b_(21) (ii) a_(11)b_(11)+a_(22)b_(22)