Home
Class 12
MATHS
Let A=[{:(2, -1, 3), (4, 0, 2), (-3, 2, ...

Let `A=[{:(2, -1, 3), (4, 0, 2), (-3, 2, 6):}]`, find det (adj A).

A

2161

B

2116

C

2611

D

1261

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the adjoint of the matrix \( A \), we can use the formula: \[ \text{det}(\text{adj } A) = (\text{det } A)^{n-1} \] where \( n \) is the order of the matrix \( A \). In this case, \( A \) is a \( 3 \times 3 \) matrix, so \( n = 3 \). ### Step 1: Calculate the determinant of matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 0 & 2 \\ -3 & 2 & 6 \end{pmatrix} \] We can calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the elements are as follows: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 0 & 2 \\ -3 & 2 & 6 \end{pmatrix} \] Thus, we have: - \( a = 2, b = -1, c = 3 \) - \( d = 4, e = 0, f = 2 \) - \( g = -3, h = 2, i = 6 \) Now substituting these values into the determinant formula: \[ \text{det}(A) = 2(0 \cdot 6 - 2 \cdot 2) - (-1)(4 \cdot 6 - 2 \cdot -3) + 3(4 \cdot 2 - 0 \cdot -3) \] Calculating each term: 1. \( 0 \cdot 6 - 2 \cdot 2 = 0 - 4 = -4 \) 2. \( 4 \cdot 6 - 2 \cdot -3 = 24 + 6 = 30 \) 3. \( 4 \cdot 2 - 0 \cdot -3 = 8 - 0 = 8 \) Now substituting back: \[ \text{det}(A) = 2(-4) + 1(30) + 3(8) \] \[ = -8 + 30 + 24 \] \[ = 46 \] ### Step 2: Calculate the determinant of the adjoint of \( A \) Using the formula we mentioned earlier: \[ \text{det}(\text{adj } A) = (\text{det } A)^{n-1} = (46)^{3-1} = (46)^{2} \] Calculating \( 46^2 \): \[ 46^2 = 2116 \] ### Final Answer Thus, the determinant of the adjoint of matrix \( A \) is: \[ \text{det}(\text{adj } A) = 2116 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

If A=|{:(1,4,5),(3,2,6),(0,1,0):}| , then evaluate A. (adj. A).

If A=[[1,-2,3],[0, 2 ,-1],[ -4,5-,2]] , find A (adj A) .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

Let Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):}| Find minor and cofactor of elements of Delta .

Let A={:[(3,2,3),(-1,4,-2),(1,4,2)]:} Find additive inverse of A.