Home
Class 12
MATHS
if abs({:(sinalpha, cosbeta), (cosalpha,...

if `abs({:(sinalpha, cosbeta), (cosalpha, sinbeta):})=1/2`, where `alpha, beta` are acute angles, then find the value of `alpha+beta`. a) `pi/3` b) `(2pi)/3``c) `pi/2` d) `pi/4`

A

`pi/3`

B

`(2pi)/3`

C

`pi/2`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the determinant given: \[ \text{abs}\begin{vmatrix} \sin \alpha & \cos \beta \\ \cos \alpha & \sin \beta \end{vmatrix} = \frac{1}{2} \] ### Step 1: Calculate the determinant The determinant of a 2x2 matrix is calculated as follows: \[ \text{det} = (\sin \alpha)(\sin \beta) - (\cos \alpha)(\cos \beta) \] So we can write: \[ |\sin \alpha \sin \beta - \cos \alpha \cos \beta| = \frac{1}{2} \] ### Step 2: Simplify the expression Using the identity for cosine, we know: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Thus, we can rewrite our determinant: \[ \sin \alpha \sin \beta - \cos \alpha \cos \beta = -(\cos \alpha \cos \beta - \sin \alpha \sin \beta) = -\cos(\alpha + \beta) \] This gives us: \[ |-\cos(\alpha + \beta)| = \frac{1}{2} \] ### Step 3: Remove the absolute value Since \(\alpha\) and \(\beta\) are acute angles, \(\alpha + \beta\) will also be an acute angle or less than \(\pi\). Therefore, we can remove the absolute value: \[ -\cos(\alpha + \beta) = \frac{1}{2} \quad \text{or} \quad \cos(\alpha + \beta) = -\frac{1}{2} \] ### Step 4: Solve for \(\alpha + \beta\) The cosine function equals \(-\frac{1}{2}\) at specific angles. The angle that satisfies this in the range of \(0\) to \(\pi\) is: \[ \alpha + \beta = \frac{2\pi}{3} \] ### Final Answer Thus, the value of \(\alpha + \beta\) is: \[ \alpha + \beta = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

sinalpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles). show that alpha+beta = pi/4

If cotalpha=1/2 , secbeta=-5/3 ,where piltalphalt(3pi)/2 and pi/2 ltbetaltpi .find the value of alpha + beta terminates

if 2sec2alpha=tan beta+cot beta then one of the value of alpha+beta is (A) pi (B) npi- pi/4, n in ZZ (C) pi/4 (D) pi/2

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2\ \ ((alpha-beta)/2)

If sinalpha-sinbeta=a and cosalpha+cosbeta=b then write the value of "cos"(alpha+beta) .

If sin^4alpha+cos^4beta+2=4sinalphacosbeta,0lt=alpha,betalt=pi/2 then find the value of (sinalpha+cosbeta)dot

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )