Home
Class 12
MATHS
Evaluate: lim(x to 0)(cotx)^(sin2x)...

Evaluate: `lim_(x to 0)(cotx)^(sin2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} (\cot x)^{\sin 2x} \), we can follow these steps: ### Step 1: Define the Limit Let \( L = \lim_{x \to 0} (\cot x)^{\sin 2x} \). ### Step 2: Take the Natural Logarithm Taking the natural logarithm on both sides gives: \[ \log L = \lim_{x \to 0} \sin 2x \cdot \log(\cot x) \] ### Step 3: Analyze the Limit As \( x \to 0 \), we know: - \( \cot x \to \infty \) (since \( \cot x = \frac{\cos x}{\sin x} \)) - \( \sin 2x \to 0 \) This results in the form \( 0 \cdot \infty \). To resolve this, we can rewrite \( \sin 2x \) in terms of \( \cot x \). ### Step 4: Rewrite \( \sin 2x \) Using the identity \( \sin 2x = 2 \sin x \cos x \), we can express the limit as: \[ \log L = \lim_{x \to 0} 2 \sin x \cos x \cdot \log(\cot x) \] ### Step 5: Change the Form We can use the fact that \( \cot x = \frac{\cos x}{\sin x} \), so: \[ \log(\cot x) = \log(\cos x) - \log(\sin x) \] Thus, we have: \[ \log L = \lim_{x \to 0} 2 \sin x \cos x \cdot (\log(\cos x) - \log(\sin x)) \] ### Step 6: Evaluate Each Logarithm As \( x \to 0 \): - \( \log(\cos x) \to \log(1) = 0 \) - \( \log(\sin x) \to \log(x) \to -\infty \) This gives us the form \( 0 \cdot (-\infty) \) again. We can focus on \( -\log(\sin x) \). ### Step 7: Apply L'Hôpital's Rule We can rewrite the limit as: \[ \log L = \lim_{x \to 0} \frac{2 \sin x \log(\cot x)}{\frac{1}{\sin 2x}} \] Now, we can apply L'Hôpital's rule since it is of the form \( \frac{0}{0} \). ### Step 8: Differentiate Numerator and Denominator Differentiate the numerator and denominator: - The derivative of the numerator \( 2 \sin x \log(\cot x) \) involves product and chain rules. - The derivative of the denominator \( \frac{1}{\sin 2x} \) is \( -2 \cos 2x \). ### Step 9: Simplify and Evaluate the Limit After applying L'Hôpital's rule and simplifying, we find: \[ \log L = 0 \] Thus, \( L = e^0 = 1 \). ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} (\cot x)^{\sin 2x} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate: lim_(x to 0) (sin x)/(tan x)

Evaluate lim_(xto0) (cosx)^(cotx).

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate : lim_(xto 0) (10^(x) - 2^(x) -5^(x)+1)/(sin^(2)x)

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

lim_(x->0)(tan8x)/(sin2x)