Home
Class 12
MATHS
inttan^(-1)xdx=xtan^(-1)x+f(x)+C, " find...

`inttan^(-1)xdx=xtan^(-1)x+f(x)+C, " find "f(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(x) \, dx \) and find the function \( f(x) \) in the equation \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) + f(x) + C, \] we will use integration by parts. ### Step-by-Step Solution: 1. **Choose Functions for Integration by Parts**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du. \] Let: - \( u = \tan^{-1}(x) \) (first function) - \( dv = dx \) (second function) 2. **Differentiate and Integrate**: Now, we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{1 + x^2} \, dx \) - \( v = x \) 3. **Apply Integration by Parts**: Substitute into the integration by parts formula: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1 + x^2} \, dx. \] 4. **Simplify the Remaining Integral**: The remaining integral is: \[ \int \frac{x}{1 + x^2} \, dx. \] We can use the substitution \( t = 1 + x^2 \), which gives \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). Thus: \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{t} \, dt = \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln(1 + x^2) + C. \] 5. **Combine the Results**: Substitute back into the integration by parts result: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1 + x^2) + C. \] 6. **Identify \( f(x) \)**: From the original equation: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) + f(x) + C, \] we can equate: \[ f(x) = -\frac{1}{2} \ln(1 + x^2). \] ### Final Answer: Thus, the function \( f(x) \) is: \[ f(x) = -\frac{1}{2} \ln(1 + x^2). \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If inttan^(4)xdx=Atan^(3)x+Btanx+phi(x) , then

inttan2xtan5xtan7xdx

f(x)=x^(2) . Find f^(-1) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

Evaluate: int_0^1xtan^(-1)xdx

If f(x)=(x-|x|)/(|x|) , then find f(-1).

Given f(x)=3x+2 . Find f^(-1)(x)

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If f: R->R is an odd function such that f(1+x)=1+f(x) and x^2f(1/x)=f(x),x!=0 then find f(x)dot