Home
Class 12
MATHS
Evaluate: int(sin(a-x))/(sinx)dx...

Evaluate: `int(sin(a-x))/(sinx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{\sin(a - x)}{\sin x} \, dx\), we can follow these steps: ### Step 1: Use the sine subtraction formula We start by applying the sine subtraction formula: \[ \sin(a - x) = \sin a \cos x - \cos a \sin x. \] Thus, we can rewrite the integral as: \[ \int \frac{\sin(a - x)}{\sin x} \, dx = \int \frac{\sin a \cos x - \cos a \sin x}{\sin x} \, dx. \] ### Step 2: Split the integral Now, we can split the integral into two separate integrals: \[ \int \frac{\sin a \cos x}{\sin x} \, dx - \int \frac{\cos a \sin x}{\sin x} \, dx. \] This simplifies to: \[ \int \sin a \cot x \, dx - \int \cos a \, dx. \] ### Step 3: Factor out constants Since \(\sin a\) and \(\cos a\) are constants with respect to \(x\), we can factor them out of the integrals: \[ \sin a \int \cot x \, dx - \cos a \int 1 \, dx. \] ### Step 4: Evaluate the integrals Now, we evaluate the integrals: 1. The integral of \(\cot x\) is \(\log |\sin x|\). 2. The integral of \(1\) is \(x\). Thus, we have: \[ \sin a \log |\sin x| - \cos a \cdot x + C, \] where \(C\) is the constant of integration. ### Final Answer The final result is: \[ \int \frac{\sin(a - x)}{\sin x} \, dx = \sin a \log |\sin x| - \cos a \cdot x + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(sinx-cosx)dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sinx)/(sin(x-a))dx

Evaluate: int(sinx)/(2+sin2x)dx

Evaluate: int(sinx)/(sin3x)dxdot

Evaluate: int(sinx)/(sin3x)dxdot

Evaluate: int(sinx)/(sin3x)dxdot

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx