Home
Class 12
MATHS
Solve the (xdy-ydx)ysin(y/x)=(ydx+xdy)xc...

Solve the `(xdy-ydx)ysin(y/x)=(ydx+xdy)xcos(y/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((xdy - ydx) \sin\left(\frac{y}{x}\right) = (ydx + xdy) x \cos\left(\frac{y}{x}\right)\), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting the given equation for clarity: \[ (xdy - ydx) \sin\left(\frac{y}{x}\right) = (ydx + xdy) x \cos\left(\frac{y}{x}\right) \] ### Step 2: Expand both sides Distributing terms on both sides gives: \[ xydy \sin\left(\frac{y}{x}\right) - y^2dx \sin\left(\frac{y}{x}\right) = ydx \cdot x \cos\left(\frac{y}{x}\right) + x^2dy \cos\left(\frac{y}{x}\right) \] ### Step 3: Divide by \(dx\) Dividing the entire equation by \(dx\) (assuming \(dx \neq 0\)): \[ \frac{d y}{d x} \cdot xy \sin\left(\frac{y}{x}\right) - y^2 \sin\left(\frac{y}{x}\right) = y \cdot x \cos\left(\frac{y}{x}\right) + x^2 \frac{d y}{d x} \cos\left(\frac{y}{x}\right) \] ### Step 4: Collect terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ \frac{d y}{d x} \cdot (xy \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right)) = y \cdot x \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right) \] ### Step 5: Isolate \(\frac{dy}{dx}\) Now isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y \cdot x \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right)}{xy \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right)} \] ### Step 6: Substitute \(v = \frac{y}{x}\) Let \(v = \frac{y}{x}\) which implies \(y = vx\). Then, differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] ### Step 7: Substitute into the equation Substituting \(y\) and \(\frac{dy}{dx}\) into the equation gives: \[ v + x \frac{dv}{dx} = \frac{(vx) \cdot x \cos(v) + (vx)^2 \sin(v)}{(vx) \cdot x \sin(v) - x^2 \cos(v)} \] ### Step 8: Simplify and solve for \(\frac{dv}{dx}\) After substituting and simplifying, we can isolate \(\frac{dv}{dx}\) and solve the resulting differential equation. ### Step 9: Integrate both sides Integrate both sides to find \(v\) in terms of \(x\). ### Step 10: Back-substitute to find \(y\) Finally, back-substitute \(v = \frac{y}{x}\) to express \(y\) in terms of \(x\).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Solve the differential equation (x dy-y dx)ysin(y/x)=(y dx+x dy)xcos(y/x) .

Solve xsin(y/x)dy=(ysin(y/x)-x)dx .

Solve : {xcos(y/x)+ysin(y/x)}ydx={ysin(y/x)-xcos(y/x)}xdy

Solve xdx+ydy=xdy-ydx.

Solve x (dy)/(dx)sin(y/x)+x-ysin(y/x)=0 given y(1)=pi/2

Solve: ydx-xdy=xydy

Solve: (x+logy)dy+ydx=0

Solve (x-1)dy+ydx=x(x-1)y^(1/3)dxdot

Solve (x-1)dy+ydx=x(x-1)y^(1/3)dxdot

Solve: (x-sqrt(xy))dy=ydx