Home
Class 12
MATHS
Evaluate: int(xsin^(-1)x)/sqrt(1-x^(2))d...

Evaluate: `int(xsin^(-1)x)/sqrt(1-x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we differentiate both sides with respect to \( x \): \[ dt = \frac{1}{\sqrt{1 - x^2}} \, dx \quad \Rightarrow \quad dx = \sqrt{1 - x^2} \, dt \] Also, since \( x = \sin t \), we can substitute \( x \) in terms of \( t \). ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral gives: \[ \int \frac{\sin t \cdot t}{\sqrt{1 - \sin^2 t}} \sqrt{1 - \sin^2 t} \, dt \] Since \(\sqrt{1 - \sin^2 t} = \cos t\), the integral simplifies to: \[ \int t \sin t \, dt \] ### Step 3: Integration by Parts We will use integration by parts. Let: - \( u = t \) (thus \( du = dt \)) - \( dv = \sin t \, dt \) (thus \( v = -\cos t \)) Using the integration by parts formula \(\int u \, dv = uv - \int v \, du\): \[ \int t \sin t \, dt = -t \cos t - \int -\cos t \, dt \] This simplifies to: \[ -t \cos t + \int \cos t \, dt = -t \cos t + \sin t + C \] ### Step 4: Substitute Back Now we substitute back \( t = \sin^{-1} x \) and \( \sin t = x \): \[ -t \cos t = -\sin^{-1} x \cdot \cos(\sin^{-1} x) \] To find \(\cos(\sin^{-1} x)\), we use the identity: \[ \cos(\sin^{-1} x) = \sqrt{1 - x^2} \] Thus, we have: \[ -t \cos t = -\sin^{-1} x \cdot \sqrt{1 - x^2} \] And since \(\sin t = x\): \[ \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = -\sin^{-1} x \cdot \sqrt{1 - x^2} + x + C \] ### Final Answer The final result is: \[ \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = x - \sin^{-1} x \cdot \sqrt{1 - x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin^(-1)x)/(sqrt(1-x^2))\ dx

int(xsin^-1x)/sqrt(1-x^2)dx

Evaluate: int(xcos^(-1)x)/(sqrt(1-x^2))\ dx

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx

Find int(xsin^(-1)x)/(sqrt(1-x^2))dx

Find : int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate: (i) int(xsin^(-1)x^2)/(sqrt(1-x^4))\ dx (ii) intx^3sin(x^4+1)\ dx

Evaluate int xsin^(2)x dx