Home
Class 12
MATHS
Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ...

Let `f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):}`.
Find 'k' so that f(x) is continuous at x = 0.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0} f(x) = f(0) \] Given the function: \[ f(x) = \frac{\log(1 + ax) - \log(1 - bx)}{x} \quad \text{for } x \neq 0 \] and \[ f(0) = k \] ### Step 1: Calculate the limit as \( x \) approaches 0 We need to evaluate: \[ \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x} \] ### Step 2: Apply L'Hôpital's Rule Since substituting \( x = 0 \) directly gives us the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. This requires us to differentiate the numerator and the denominator. **Numerator:** Differentiate \( \log(1 + ax) - \log(1 - bx) \): \[ \frac{d}{dx}[\log(1 + ax)] = \frac{a}{1 + ax} \] \[ \frac{d}{dx}[\log(1 - bx)] = \frac{-b}{1 - bx} \] Thus, the derivative of the numerator is: \[ \frac{a}{1 + ax} + \frac{b}{1 - bx} \] **Denominator:** The derivative of \( x \) is \( 1 \). ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{a}{1 + ax} + \frac{b}{1 - bx} \right) \] ### Step 4: Substitute \( x = 0 \) Now substitute \( x = 0 \) into the limit: \[ \frac{a}{1 + a \cdot 0} + \frac{b}{1 - b \cdot 0} = \frac{a}{1} + \frac{b}{1} = a + b \] ### Step 5: Set the limit equal to \( k \) For the function to be continuous at \( x = 0 \): \[ k = \lim_{x \to 0} f(x) = a + b \] ### Final Result Thus, the value of \( k \) is: \[ \boxed{a + b} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If F(x) is defined in x in (-1/3,1/3) f(x) = {((1/x)log_e((1+3x)/(1-2x)),x !=0),(k,x=0):} find k such that f(x) is continuous

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

Let f(x)=(log(1+x/a)-log(1-x/b))/x ,x!=0. Find the value of f at x=0 so that f becomes continuous at x=0

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

Let f(x)=(log(1+x/a)-log(1-x/b))/x ,\ \ x!=0 . Find the value of f at x=0 so that f becomes continuous at x=0 .

Let f(x)=(log(1+x/a)-log(1-x/b))/x ,\ \ x!=0 . Find the value of f at x=0 so that f becomes continuous at x=0 .

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}