Home
Class 12
MATHS
If x=2(theta-sintheta) and y=2(1+costhet...

If `x=2(theta-sintheta) and y=2(1+costheta), " find "(d^(2)y)/(dx^(2))" at "theta=pi/3`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{3}\), we will follow these steps: ### Step 1: Find \(\frac{dx}{d\theta}\) Given: \[ x = 2(\theta - \sin \theta) \] We differentiate \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = 2\left(1 - \cos \theta\right) \] ### Step 2: Find \(\frac{dy}{d\theta}\) Given: \[ y = 2(1 + \cos \theta) \] We differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = 2(-\sin \theta) = -2\sin \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-2\sin \theta}{2(1 - \cos \theta)} = \frac{-\sin \theta}{1 - \cos \theta} \] ### Step 4: Simplify \(\frac{dy}{dx}\) We can simplify \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-\sin \theta}{1 - \cos \theta} = \frac{-\sin \theta}{2\sin^2(\theta/2)} = -\cot(\theta/2) \] ### Step 5: Find \(\frac{d^2y}{dx^2}\) To find the second derivative, we need to differentiate \(\frac{dy}{dx}\) with respect to \(\theta\): \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(-\cot(\theta/2)\right) \cdot \frac{1}{\frac{dx}{d\theta}} \] The derivative of \(-\cot(\theta/2)\) is: \[ \frac{d}{d\theta}\left(-\cot(\theta/2)\right) = \frac{1}{2}\csc^2(\theta/2) \] Thus, \[ \frac{d^2y}{dx^2} = \frac{\frac{1}{2}\csc^2(\theta/2)}{2(1 - \cos \theta)} = \frac{\csc^2(\theta/2)}{4(1 - \cos \theta)} \] ### Step 6: Substitute \(\theta = \frac{\pi}{3}\) Now we substitute \(\theta = \frac{\pi}{3}\): \[ 1 - \cos\left(\frac{\pi}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2} \] \[ \csc^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{\sin\left(\frac{\pi}{6}\right)}\right)^2 = \left(\frac{1}{\frac{1}{2}}\right)^2 = 4 \] Thus, \[ \frac{d^2y}{dx^2} = \frac{4}{4 \cdot \frac{1}{2}} = \frac{4}{2} = 2 \] ### Final Answer: \[ \frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{3} \text{ is } 2. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If x=a(theta-sintheta) , y=a(1+costheta) find (d^2y)/(dx^2)

If x=a(theta-sintheta) and, y=a(1+costheta) , find (dy)/(dx) at theta=pi/3 .

If x=a\ (theta-sintheta),\ y=a\ (1+costheta),\ \ \ find (d^2\ y)/(dx^2)

If x=a(2theta-sin2theta) and y=a(1-cos2theta) find (dy)/(dx) when theta = pi/3

If x=a(theta+sintheta),\ \ y=a(1+costheta) , find (dy)/(dx) .

Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2 y)/(dx^2) at theta= pi

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=a(theta+sintheta),y=a(1+costheta), Prove that (d^2y)/(dx^2)=-a/(y^2)

If x=a(theta+sintheta) , y=a(1+costheta) , prove that (d^2y)/(dx^2)=-a/(y^2) .

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2