Home
Class 12
MATHS
If A=[{:(9, 7, 3), (5, -1, 4), (6, 8, 2)...

If `A=[{:(9, 7, 3), (5, -1, 4), (6, 8, 2):}]" find "A^(-1)` and hence solve the system of equations:
`9x+7y+3z=6, 5x-y+4z=1, 6x+8y+2z=4`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the matrix \( A \) and then use it to solve the system of equations. Let's break this down step by step. ### Step 1: Define the Matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} 9 & 7 & 3 \\ 5 & -1 & 4 \\ 6 & 8 & 2 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 9((-1) \cdot 2 - 4 \cdot 8) - 7(5 \cdot 2 - 4 \cdot 6) + 3(5 \cdot 8 - (-1) \cdot 6) \] Calculating each term: 1. \( 9((-1) \cdot 2 - 4 \cdot 8) = 9(-2 - 32) = 9(-34) = -306 \) 2. \( -7(5 \cdot 2 - 4 \cdot 6) = -7(10 - 24) = -7(-14) = 98 \) 3. \( 3(5 \cdot 8 - (-1) \cdot 6) = 3(40 + 6) = 3(46) = 138 \) Now, summing these values: \[ \text{det}(A) = -306 + 98 + 138 = -70 \] ### Step 3: Calculate the Adjoint of \( A \) To find the adjoint, we first calculate the minors and then take the transpose. 1. Minor of \( 9 \): \( (-1) \cdot 2 - 4 \cdot 8 = -2 - 32 = -34 \) 2. Minor of \( 7 \): \( 5 \cdot 2 - 4 \cdot 6 = 10 - 24 = -14 \) 3. Minor of \( 3 \): \( 5 \cdot 8 - (-1) \cdot 6 = 40 + 6 = 46 \) 4. Minor of \( 5 \): \( 7 \cdot 2 - 3 \cdot 8 = 14 - 24 = -10 \) 5. Minor of \( -1 \): \( 9 \cdot 2 - 3 \cdot 6 = 18 - 18 = 0 \) 6. Minor of \( 4 \): \( 9 \cdot 8 - 7 \cdot 6 = 72 - 42 = 30 \) 7. Minor of \( 6 \): \( 7 \cdot 4 - 3 \cdot (-1) = 28 + 3 = 31 \) 8. Minor of \( 8 \): \( 9 \cdot 4 - 3 \cdot 5 = 36 - 15 = 21 \) 9. Minor of \( 2 \): \( 9 \cdot (-1) - 7 \cdot 5 = -9 - 35 = -44 \) Now, we can form the matrix of minors: \[ \text{Minors} = \begin{pmatrix} -34 & -14 & 46 \\ -10 & 0 & 30 \\ 31 & 21 & -44 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -34 & -10 & 31 \\ -14 & 0 & 21 \\ 46 & 30 & -44 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-70} \begin{pmatrix} -34 & -10 & 31 \\ -14 & 0 & 21 \\ 46 & 30 & -44 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} \frac{34}{70} & \frac{10}{70} & -\frac{31}{70} \\ \frac{14}{70} & 0 & -\frac{21}{70} \\ -\frac{46}{70} & -\frac{30}{70} & \frac{44}{70} \end{pmatrix} \] ### Step 5: Solve the System of Equations The system of equations can be represented as: \[ AX = B \] Where: \[ B = \begin{pmatrix} 6 \\ 1 \\ 4 \end{pmatrix} \] To find \( X \): \[ X = A^{-1}B \] Calculating: \[ X = \begin{pmatrix} \frac{34}{70} & \frac{10}{70} & -\frac{31}{70} \\ \frac{14}{70} & 0 & -\frac{21}{70} \\ -\frac{46}{70} & -\frac{30}{70} & \frac{44}{70} \end{pmatrix} \begin{pmatrix} 6 \\ 1 \\ 4 \end{pmatrix} \] Calculating each component: 1. \( x = \frac{34}{70} \cdot 6 + \frac{10}{70} \cdot 1 - \frac{31}{70} \cdot 4 \) 2. \( y = \frac{14}{70} \cdot 6 + 0 \cdot 1 - \frac{21}{70} \cdot 4 \) 3. \( z = -\frac{46}{70} \cdot 6 - \frac{30}{70} \cdot 1 + \frac{44}{70} \cdot 4 \) Calculating these values gives us the solution for \( x, y, z \). ### Final Solution After performing the calculations, we find: \[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] , find A^(-1) and hence solve the system of linear equations: \ 2x-3y+5z=11 ,\ \ 3x+2y-4z=5,\ \ x+y-2z=-3

For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

Solve the system of equations 2/x+3/y+(10)/z=4 , 4/x-6/y+5/z=1 , 6/x+9/y-(20)/z=2

A=[3-4 2 2 3 5 1 0 1] , find A^(-1) and hence solve the following system of equations: 3x-4y+2z=-1,\ \ 2x+3y+5z=7,\ \ x+z=2

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

The number of solutions of the system of equations: 2x+y-z=7 x-3y+2z=1, x+4y-3z=5 is

Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1,-2,-2),( 2, 1, 3)] and use it to solve the system of equations: x-y+z=4,\ \ x-2y-2z=9,\ \ 2x+y+3z=1.