Home
Class 12
MATHS
Evaluate: int cos^(-1)sqrt(x)dx...

Evaluate: `int cos^(-1)sqrt(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos^{-1}(\sqrt{x}) \, dx \), we will follow a systematic approach using substitution and integration by parts. ### Step-by-Step Solution: 1. **Substitution**: Let \( \sqrt{x} = \cos(\theta) \). Then, squaring both sides gives: \[ x = \cos^2(\theta) \] Differentiating both sides with respect to \( \theta \): \[ dx = -2 \cos(\theta) \sin(\theta) \, d\theta = -\sin(2\theta) \, d\theta \] 2. **Rewrite the Integral**: Substitute \( \sqrt{x} \) and \( dx \) into the integral: \[ \int \cos^{-1}(\sqrt{x}) \, dx = \int \cos^{-1}(\cos(\theta)) (-\sin(2\theta)) \, d\theta \] Since \( \cos^{-1}(\cos(\theta)) = \theta \), we have: \[ = -\int \theta \sin(2\theta) \, d\theta \] 3. **Integration by Parts**: Let \( u = \theta \) and \( dv = \sin(2\theta) \, d\theta \). Then, we differentiate and integrate: \[ du = d\theta, \quad v = -\frac{1}{2} \cos(2\theta) \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ -\int \theta \sin(2\theta) \, d\theta = -\left( -\frac{1}{2} \theta \cos(2\theta) - \int -\frac{1}{2} \cos(2\theta) \, d\theta \right) \] Simplifying gives: \[ = \frac{1}{2} \theta \cos(2\theta) + \frac{1}{4} \sin(2\theta) \] 4. **Substituting Back**: Recall that \( \theta = \cos^{-1}(\sqrt{x}) \) and \( \cos(2\theta) = 2\cos^2(\theta) - 1 = 2x - 1 \), and \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2\sqrt{1-x} \cdot \sqrt{x} \): \[ = \frac{1}{2} \cos^{-1}(\sqrt{x}) (2x - 1) + \frac{1}{4} (2\sqrt{x(1-x)}) \] 5. **Final Result**: Therefore, the integral evaluates to: \[ \int \cos^{-1}(\sqrt{x}) \, dx = \frac{1}{2} \cos^{-1}(\sqrt{x}) (2x - 1) - \frac{1}{2} \sqrt{x(1-x)} + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int cos^(-1) sqrt((x)/(x+1))dx

Evaluate int cos^(3)x sqrt(sinx)dx .

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate: int(1-x)\ sqrt(x)\ dx

Evaluate: int cos {2 tan^(-1) sqrt((1-x)/(1+x))}dx

Evaluate: (i) int(1-x)sqrt(x)\ dx (ii) int(sqrt(x)+1/(sqrt(x)))^2\ dx

Evaluate: int(1)/((sqrt(2)+x))dx=

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx