Home
Class 12
MATHS
Show that the scalar vec(A)*(vec(B)+vec(...

Show that the scalar `vec(A)*(vec(B)+vec(C)) times (vec(A)+vec(B)+vec(C))=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the scalar \( \vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C}) = 0 \), we will follow the steps below: ### Step 1: Expand the Expression We start with the expression: \[ \vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C}) \] Using the distributive property of the cross product, we can rewrite this as: \[ \vec{A} \cdot \left( \vec{B} \times (\vec{A} + \vec{B} + \vec{C}) + \vec{C} \times (\vec{A} + \vec{B} + \vec{C}) \right) \] ### Step 2: Calculate the Cross Products Now, we compute the cross products: 1. \( \vec{B} \times (\vec{A} + \vec{B} + \vec{C}) = \vec{B} \times \vec{A} + \vec{B} \times \vec{B} + \vec{B} \times \vec{C} \) - Note that \( \vec{B} \times \vec{B} = 0 \) (the cross product of any vector with itself is zero). - Thus, this simplifies to: \[ \vec{B} \times \vec{A} + \vec{B} \times \vec{C} \] 2. Similarly, for \( \vec{C} \times (\vec{A} + \vec{B} + \vec{C}) \): \[ \vec{C} \times \vec{A} + \vec{C} \times \vec{B} + \vec{C} \times \vec{C} \] - Again, \( \vec{C} \times \vec{C} = 0 \), so this simplifies to: \[ \vec{C} \times \vec{A} + \vec{C} \times \vec{B} \] ### Step 3: Combine the Results Now we can combine the results of the cross products: \[ \vec{A} \cdot \left( \vec{B} \times \vec{A} + \vec{B} \times \vec{C} + \vec{C} \times \vec{A} + \vec{C} \times \vec{B} \right) \] ### Step 4: Apply Properties of the Dot and Cross Products Using the property that \( \vec{A} \cdot (\vec{B} \times \vec{C}) \) is equal to the scalar triple product, we can analyze each term: 1. \( \vec{A} \cdot (\vec{B} \times \vec{A}) = 0 \) (since the angle between \( \vec{A} \) and \( \vec{B} \times \vec{A} \) is 0). 2. \( \vec{A} \cdot (\vec{C} \times \vec{A}) = 0 \) (for the same reason). Thus, we are left with: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) + \vec{A} \cdot (\vec{C} \times \vec{B}) \] Using the property of the scalar triple product, we know that: \[ \vec{A} \cdot (\vec{C} \times \vec{B}) = -\vec{A} \cdot (\vec{B} \times \vec{C}) \] This means that: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) + (-\vec{A} \cdot (\vec{B} \times \vec{C})) = 0 \] ### Conclusion Thus, we have shown that: \[ \vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C}) = 0 \] Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MODEL TEST PAPER - 13

    ICSE|Exercise SECTION - C(15 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) times vec(b)=vec(c) and vec(b) times vec(c)=vec(a)," prove that "vec(a), vec(b), vec(c) are mutually perpendicular and abs(vec(b))=1 and abs(vec(c))=abs(vec(a)) .

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

The scalar vec Adot ( ( vec B+ vec C)xx( vec A+ vec B+ vec C)) equals a. 0 b. [ vec A vec B vec C]+[ vec B vec C vec A] c. [ vec A vec B vec C] d. none of these