Home
Class 12
MATHS
The value of hati.(hatj xx hatk) + hatj...

The value of `hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.( hati xx hatj)` is

A

0

B

`-1`

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \), we will use the properties of the dot and cross products of unit vectors in 3D space. ### Step-by-Step Solution: 1. **Evaluate \( \hat{j} \times \hat{k} \)**: \[ \hat{j} \times \hat{k} = \hat{i} \] This is because the right-hand rule gives us \( \hat{i} \) when we cross \( \hat{j} \) and \( \hat{k} \). **Hint**: Remember the cyclic nature of the unit vectors: \( \hat{i} \times \hat{j} = \hat{k} \), \( \hat{j} \times \hat{k} = \hat{i} \), and \( \hat{k} \times \hat{i} = \hat{j} \). 2. **Substitute into the expression**: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) = \hat{i} \cdot \hat{i} = 1 \] 3. **Evaluate \( \hat{i} \times \hat{k} \)**: \[ \hat{i} \times \hat{k} = -\hat{j} \] Again, using the right-hand rule, crossing \( \hat{i} \) and \( \hat{k} \) gives us \( -\hat{j} \). **Hint**: The negative sign indicates the direction of the resulting vector is opposite to what is expected from the right-hand rule. 4. **Substitute into the expression**: \[ \hat{j} \cdot (\hat{i} \times \hat{k}) = \hat{j} \cdot (-\hat{j}) = -1 \] 5. **Evaluate \( \hat{i} \times \hat{j} \)**: \[ \hat{i} \times \hat{j} = \hat{k} \] **Hint**: Again, use the cyclic nature of the unit vectors. 6. **Substitute into the expression**: \[ \hat{k} \cdot (\hat{i} \times \hat{j}) = \hat{k} \cdot \hat{k} = 1 \] 7. **Combine all parts of the expression**: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) = 1 - 1 + 1 = 1 \] ### Final Result: The value of \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \) is \( 1 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

The value of (hatixxhatj).hatk+hati.hatj is

Find the value of |(hati+hatj)xx(hati+2hatj+hatk)|

Evaluate : [2hati " " hatj " " hatk ] +[hati hatk hatj ] +[hatk hatj 2hati ]

Find the values of . (a) (4hatj) xx (-6hatk) (b) (3hatj).(-4hatj) (c) (2hati) - (-4hatk) .

Vectors perpendicular to hati-hatj-hatk and in the plane of hati+hatj+hatk and -hati+hatj+hatk are (A) hati+hatk (B) 2hati+hatj+hatk (C) 3hati+2hatj+hatk (D) -4hati-2hatj-2hatk

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to