Home
Class 12
MATHS
If X+Y=[(5,2),(0,9)] and X-Y=[(3, 6), (0...

If `X+Y=[(5,2),(0,9)] and X-Y=[(3, 6), (0,-1)] and X=[(k,k),(0,k)]`, then k =

A

8

B

2

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( X + Y = \begin{pmatrix} 5 & 2 \\ 0 & 9 \end{pmatrix} \) 2. \( X - Y = \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix} \) 3. \( X = \begin{pmatrix} k & k \\ 0 & k \end{pmatrix} \) We need to find the value of \( k \). ### Step-by-step Solution: **Step 1: Add the two equations** We start by adding the two equations \( X + Y \) and \( X - Y \): \[ (X + Y) + (X - Y) = \begin{pmatrix} 5 & 2 \\ 0 & 9 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix} \] This simplifies to: \[ 2X = \begin{pmatrix} 5 + 3 & 2 + 6 \\ 0 + 0 & 9 - 1 \end{pmatrix} = \begin{pmatrix} 8 & 8 \\ 0 & 8 \end{pmatrix} \] **Step 2: Solve for \( X \)** Now, divide both sides by 2 to solve for \( X \): \[ X = \frac{1}{2} \begin{pmatrix} 8 & 8 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix} \] **Step 3: Compare with the given form of \( X \)** We know that \( X = \begin{pmatrix} k & k \\ 0 & k \end{pmatrix} \). Now we can compare this with our calculated value of \( X \): \[ \begin{pmatrix} k & k \\ 0 & k \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix} \] From this comparison, we can see that \( k = 4 \). ### Final Answer: Thus, the value of \( k \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If K is constant such that xy + k = e ^(((x-1)^2)/(2)) satisfies the differential equation x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1) and y (1) =0 then find the value of K .

If x^(3) + 3 (ky)^(3) = k^(3) and (dy)/(dx) + (x^(2))/(24 y^(2)) = 0 , then k is (where k gt 0)

The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][[x ,y, z]] =[[0,0, 0]] has a solution for (x ,y ,z) besides (0,0,0)dot Then the value of k is _______.

The asymptotes of the hyperbola x y=h x+k y are (1) x-k=0 and y-h=0 (2)x+h=0 and y+k=0 (3) x-k=0 and y+h=0 (4)x+k=0 and y-h=0

Let x^k+y^k =a^k, (a,k gt 0) and (dy)/(dx) +(y/x)^(5//3)=0 , then k=

The orthocentre of triangle formed by lines x+y-1=0, 2x+y-1=0 and y=0 is (h, k), then (1)/(k^(2))=

If the points (k,1) (2,-3) are conjugate w.r.t. x^(2)+y^(2)+4x-6y-12=0 then k

The line x - 6y + 11 = 0 bisects the join of (8, -1) and (0, k). Find the value of k.

If the range ot a random vaniabie X is 0,1,2,3, at P(X=K)=((K+1)/3^k) a for k>=0, then a equals

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to