Home
Class 12
MATHS
If f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x...

If `f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x+b, x+c, 0)|`, then

A

`f(a)=0`

B

`f(b)=0`

C

`f(0)=0`

D

`f(1)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( f(x) = \left| \begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array} \right| \). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ f(x) = \left| \begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array} \right| \] 2. **Expand the Determinant**: We can expand the determinant using the first row: \[ f(x) = 0 \cdot \left| \begin{array}{cc} 0 & x-c \\ x+c & 0 \end{array} \right| - (x-a) \cdot \left| \begin{array}{cc} x+a & x-c \\ x+b & 0 \end{array} \right| + (x-b) \cdot \left| \begin{array}{cc} x+a & 0 \\ x+b & x+c \end{array} \right| \] The first term is zero, so we focus on the other two terms. 3. **Calculate the 2x2 Determinants**: - For the second term: \[ \left| \begin{array}{cc} x+a & x-c \\ x+b & 0 \end{array} \right| = (x+a)(0) - (x-c)(x+b) = -(x-c)(x+b) = - (x^2 + bx - cx - bc) \] - For the third term: \[ \left| \begin{array}{cc} x+a & 0 \\ x+b & x+c \end{array} \right| = (x+a)(x+c) - 0 = (x+a)(x+c) = x^2 + (a+c)x + ac \] 4. **Combine the Results**: Now substituting back into \( f(x) \): \[ f(x) = -(x-a)(-(x^2 + (b-c)x + bc)) + (x-b)(x^2 + (a+c)x + ac) \] Simplifying this will yield a polynomial in \( x \). 5. **Evaluate \( f(a) \), \( f(b) \), and \( f(0) \)**: - For \( f(a) \): \[ f(a) = 0 \quad \text{(since one term will contain \( a-a \))} \] - For \( f(b) \): \[ f(b) = 0 \quad \text{(since one term will contain \( b-b \))} \] - For \( f(0) \): \[ f(0) = abc \quad \text{(after substituting \( x = 0 \))} \] 6. **Conclusion**: The function \( f(x) \) evaluates to zero for both \( f(a) \) and \( f(b) \), and a non-zero value for \( f(0) \). Thus, the correct option is that \( f(x) \) has roots at \( x = a \) and \( x = b \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|[0,x-a, x-b], [x+a,0,x-c], [x+b, x+c,0]|,t h e n (a) f(a)=0 (b) f(b)=0 (c) f(0)=0 (d) f(1)=0

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-c],[ x+b, x+c,0]|=0,a!=b!=c and b(a+c)> a c

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]| is a. c b. a c. b d. 0

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b], [x^2+a,0,x^2+c], [x^4+b, x-c,0]| is a. b b. c c. b d. 0

If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,where ac !=0, then prove that f(x)g(x)=0 has at least two real roots.

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

If f(x)={[1/(x^2)-1/(x^2),xlt0],[sin^(-1)(x+b),x gt-0]} then at x=0,f(x) is (a)continuous if b=0 (b)discontinuous for any real b (c)differentiable for b=+-1 (d)non-differentiable for any real b

If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0 , then a, b, c are in

Let f(x) ={{:( xe^(x), xle0),( x+x^(2)-x^(3), xgt0):} then the correct statement is (a) f is continuous and differentiable for all x (b) f is continuous but not differentiable at x=0 (c) f is continuous and differentiable for all x . (d) f ' is continuous but not differentiable at x=0