Home
Class 12
MATHS
If f(x)= {4 - (x-7)^(3)}, then find f^(-...

If `f(x)= {4 - (x-7)^(3)}`, then find `f^(-1)(x)=`

A

`(4-x)^(1/3)+7`

B

`(4-x)^((1)/(3))-7`

C

`(4+x)^(3)+7`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 4 - (x - 7)^3 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = 4 - (x - 7)^3 \] We will set \( f(y) = x \) instead of \( f(x) \) to find the inverse. ### Step 2: Set up the equation Now, we can write: \[ x = 4 - (y - 7)^3 \] ### Step 3: Isolate the cubic term To isolate the cubic term, we rearrange the equation: \[ (y - 7)^3 = 4 - x \] ### Step 4: Take the cube root Next, we take the cube root of both sides: \[ y - 7 = \sqrt[3]{4 - x} \] ### Step 5: Solve for \( y \) Now, we solve for \( y \) by adding 7 to both sides: \[ y = 7 + \sqrt[3]{4 - x} \] ### Step 6: Write the inverse function Since we set \( f(y) = x \), we can express the inverse function as: \[ f^{-1}(x) = 7 + \sqrt[3]{4 - x} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 7 + \sqrt[3]{4 - x} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

If f(x)=-4-(x-7)^3 , write f^(-1)(x)dot

If f(x)=-4-(x-7)^3 , write f^(-1)(x)dot

Let f(x)=x^4-x^3 then find f '(2)

If f: R to R defined as f(x)=3x+7 , then find f^(-1)(-2)

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f: R^+ to R , f(x) + 3x f(1/x)= 2(x+1),t h e n find f(x)

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .