Home
Class 12
MATHS
Solve : sin["sin"^(-1)1/5+cos^(-1)x] = 1...

Solve : `sin["sin"^(-1)1/5+cos^(-1)x]` = 1 .Find x.

A

`(pi)/(2)`

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\sin^{-1}(1/5) + \cos^{-1}(x)) = 1 \), we can follow these steps: ### Step 1: Understand the equation We know that \( \sin(\theta) = 1 \) when \( \theta = \frac{\pi}{2} + 2k\pi \) for any integer \( k \). In our case, we can set: \[ \sin^{-1}(1/5) + \cos^{-1}(x) = \frac{\pi}{2} \] ### Step 2: Rearrange the equation From the equation above, we can rearrange it to isolate \( \cos^{-1}(x) \): \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(1/5) \] ### Step 3: Use the identity We know from trigonometric identities that: \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( \sin^{-1}(1/5) \) in terms of \( x \): \[ \sin^{-1}(x) = \frac{\pi}{2} - \cos^{-1}(x) \] ### Step 4: Substitute the value Now substituting \( \sin^{-1}(1/5) \) into the equation gives us: \[ \sin^{-1}(1/5) = \frac{\pi}{2} - \cos^{-1}(x) \] ### Step 5: Solve for \( x \) Using the identity \( \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2} \), we can find: \[ x = \cos(\cos^{-1}(x)) = \cos\left(\frac{\pi}{2} - \sin^{-1}(1/5)\right) \] This simplifies to: \[ x = \sin(\sin^{-1}(1/5)) = \frac{1}{5} \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{\frac{1}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Solve : "sin"(sin^(-1)x)=1/2

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve: sin^(-1)x=pi/6+cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

If sin(sin^(-1)(1/5)+cos^(-1)(x))=1 Find the value of x .

If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1 , then find the value of x

solve sin^(-1) x le cos^(-1) x

If "sin"(sin^(-1)\ 1/5+cos^(-1)x)=1, then find the value of xdot