Home
Class 12
MATHS
If sqrt(x)+sqrt(y) = sqrt(a), find (d^(2...

If `sqrt(x)+sqrt(y) = sqrt(a)`, find `(d^(2)y)/(dx^(2))` at x = a.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sqrt{x} + \sqrt{y} = \sqrt{a} \] We need to find the second derivative of \( y \) with respect to \( x \), denoted as \( \frac{d^2y}{dx^2} \), at the point where \( x = a \). ### Step 1: Differentiate the equation with respect to \( x \) Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(\sqrt{a}) \] Since \( a \) is a constant, its derivative is 0. The derivatives of \( \sqrt{x} \) and \( \sqrt{y} \) are: \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \] ### Step 2: Solve for \( \frac{dy}{dx} \) Rearranging the equation gives: \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiplying both sides by \( 2\sqrt{y} \): \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Step 3: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) with respect to \( x \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{\sqrt{y}}{\sqrt{x}}\right) \] Using the quotient rule, where \( u = \sqrt{y} \) and \( v = \sqrt{x} \): \[ \frac{d^2y}{dx^2} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{du}{dx} = \frac{1}{2\sqrt{y}} \frac{dy}{dx}, \quad \frac{dv}{dx} = \frac{1}{2\sqrt{x}} \] Substituting these into the quotient rule gives: \[ \frac{d^2y}{dx^2} = \frac{\sqrt{x} \left(\frac{1}{2\sqrt{y}} \frac{dy}{dx}\right) - \sqrt{y} \left(\frac{1}{2\sqrt{x}}\right)}{x} \] ### Step 4: Substitute \( \frac{dy}{dx} \) into the equation Substituting \( \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \): \[ \frac{d^2y}{dx^2} = \frac{\sqrt{x} \left(\frac{1}{2\sqrt{y}} \left(-\frac{\sqrt{y}}{\sqrt{x}}\right)\right) - \sqrt{y} \left(\frac{1}{2\sqrt{x}}\right)}{x} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-\frac{1}{2\sqrt{x}} - \frac{\sqrt{y}}{2\sqrt{x}}}{x} \] ### Step 5: Evaluate at \( x = a \) Now we substitute \( x = a \): \[ \frac{d^2y}{dx^2} = \frac{-\frac{1}{2\sqrt{a}} - \frac{\sqrt{y}}{2\sqrt{a}}}{a} \] Since \( \sqrt{y} = \sqrt{a} - \sqrt{a} = 0 \): \[ \frac{d^2y}{dx^2} = \frac{-\frac{1}{2\sqrt{a}}}{a} \] Thus: \[ \frac{d^2y}{dx^2} = \frac{-1}{2a\sqrt{a}} \] ### Final Result At \( x = a \): \[ \frac{d^2y}{dx^2} = \frac{1}{2a} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

If y=sqrt(x+1)- sqrt(x-1) , prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

If y=sqrt(x+sqrt(x+sqrt(x+.........+infty)))," find "(dy)/(dx) .