Home
Class 12
MATHS
Evaluate : int (sin x +cos x ) sqrt(9 +1...

Evaluate : `int (sin x +cos x ) sqrt(9 +16 sin 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\sin x + \cos x) \sqrt{9 + 16 \sin 2x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (\sin x + \cos x) \sqrt{9 + 16 \sin 2x} \, dx \] We know that \( \sin 2x = 2 \sin x \cos x \), so we can rewrite the integral as: \[ \int (\sin x + \cos x) \sqrt{9 + 32 \sin x \cos x} \, dx \] ### Step 2: Simplify the Expression Inside the Square Root Next, we can express \( 9 + 32 \sin x \cos x \) in a different form. We can rewrite \( 32 \sin x \cos x \) as \( 16(2 \sin x \cos x) \): \[ 9 + 32 \sin x \cos x = 9 + 16(2 \sin x \cos x) = 9 + 16 \sin 2x \] ### Step 3: Substitute for \( \sin x + \cos x \) We can also express \( \sin x + \cos x \) in a different way. Let: \[ t = \sin x - \cos x \] Then, we have: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] ### Step 4: Change of Variables Now, we will let \( t = \sin x - \cos x \). The derivative is: \[ dt = (\cos x + \sin x) \, dx \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{\cos x + \sin x} \] ### Step 5: Rewrite the Integral Now substituting \( t \) into the integral, we have: \[ \int \sqrt{9 + 16 \sin 2x} \, dt \] ### Step 6: Factor Out Constants We can factor out constants from the square root: \[ \sqrt{9 + 16 \sin 2x} = \sqrt{25 - 16t^2} \] ### Step 7: Use the Integral Formula We can apply the integral formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] In our case, \( a^2 = 25 \) and \( x = 4t \). ### Step 8: Final Expression After applying the formula and simplifying, we get: \[ \frac{t}{2} \sqrt{25 - 16t^2} + \frac{25}{2} \sin^{-1}\left(\frac{4t}{5}\right) + C \] ### Final Answer Thus, the evaluated integral is: \[ \frac{1}{2}(\sin x - \cos x) \sqrt{25 - 16(\sin x - \cos x)^2} + \frac{25}{2} \sin^{-1}\left(\frac{4(\sin x - \cos x)}{5}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (sin x+ cos x)/(sqrt(9+16sin2x))dx

Evaluate : int(sin x + cos x)/(9 + 16 sin 2x) dx .

evaluate int( sin x + cos x )^ 2 dx

Evaluate : int ("cos 2x ")/(sqrt(1+ "sin" 2x))" dx "

Evaluate: int1/(sin^2x cos^2x)\ dx

Evaluate the following integrals Evaluate int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx

Evaluate: int(sin^2x)/(cos^6x)\ dx

Evaluate : int_(0)^(pi/4) (sinx+ cos x)/( 16 + 9sin2x)

Evaluate int(1)/(sin x- sin 2x)dx .

Evaluate: int1/(sin^2x+sin2x)dx