Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(4)) log(1+tan t...

Evaluate : `int_(0)^((pi)/(4)) log(1+tan theta ) d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta, \] we will use a property of definite integrals. ### Step 1: Apply the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] In our case, we set \( a = \frac{\pi}{4} \) and \( f(\theta) = \log(1 + \tan \theta) \). Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan(\frac{\pi}{4} - \theta)) \, d\theta. \] ### Step 2: Simplify \( \tan(\frac{\pi}{4} - \theta) \) Using the tangent subtraction formula, we find: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\left(\frac{\pi}{4}\right) - \tan(\theta)}{1 + \tan\left(\frac{\pi}{4}\right)\tan(\theta)} = \frac{1 - \tan(\theta)}{1 + \tan(\theta)}. \] ### Step 3: Substitute back into the integral Now, we substitute this back into the integral: \[ I = \int_0^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) \, d\theta. \] ### Step 4: Simplify the logarithm We can simplify the expression inside the logarithm: \[ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{(1 + \tan \theta) + (1 - \tan \theta)}{1 + \tan \theta} = \frac{2}{1 + \tan \theta}. \] Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan \theta}\right) \, d\theta. \] ### Step 5: Split the logarithm Using the property of logarithms, we can split this into two integrals: \[ I = \int_0^{\frac{\pi}{4}} \log(2) \, d\theta - \int_0^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta. \] ### Step 6: Evaluate the first integral The first integral is straightforward: \[ \int_0^{\frac{\pi}{4}} \log(2) \, d\theta = \log(2) \cdot \left(\frac{\pi}{4} - 0\right) = \frac{\pi}{4} \log(2). \] ### Step 7: Combine the results Now we have: \[ I = \frac{\pi}{4} \log(2) - I. \] ### Step 8: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = \frac{\pi}{4} \log(2). \] Dividing by 2, we find: \[ I = \frac{\pi}{8} \log(2). \] ### Final Result Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta = \frac{\pi}{8} \log(2). \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/4)log(1+tanx)dxdot

Evaluate : int_0^(pi/4)log(1+tanx)dx .

Evaluate: int_(-pi)^(3pi)log(s e ctheta-t a ntheta)d theta

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

Evaluate: int_(-pi)^(3pi)log(s e c theta-t a ntheta)d theta

(f) Evaluate int_(0)^( pi)int_(0)^( a(1+cos theta))rd theta dr

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta

STATEMENT 1: int_0^(pi/4)log(1+t a ntheta)d theta=pi/8log2. STATEMENT 2: int_0^(pi/2)logsin theta d theta =-pilog2.

Evaluate: int_0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2thetad theta .