Home
Class 12
MATHS
int e^(f(x)) dx = (x^(6))/(6) +C, find f...

`int e^(f(x)) dx = (x^(6))/(6) +C`, find f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \int e^{f(x)} \, dx = \frac{x^6}{6} + C \) and find \( f(x) \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \). \[ \frac{d}{dx} \left( \int e^{f(x)} \, dx \right) = \frac{d}{dx} \left( \frac{x^6}{6} + C \right) \] ### Step 2: Apply the Fundamental Theorem of Calculus According to the Fundamental Theorem of Calculus, the derivative of an integral is the integrand itself. Thus, we have: \[ e^{f(x)} = x^5 \] ### Step 3: Take the natural logarithm of both sides To isolate \( f(x) \), we take the natural logarithm (logarithm base \( e \)) of both sides: \[ \ln(e^{f(x)}) = \ln(x^5) \] ### Step 4: Simplify using properties of logarithms Using the property of logarithms that \( \ln(e^a) = a \) and \( \ln(a^b) = b \ln(a) \), we can simplify: \[ f(x) = 5 \ln(x) \] ### Final Result Thus, the function \( f(x) \) is: \[ f(x) = 5 \ln(x) \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

If int(a x+b^2)\ dx=f(x)+c , find f(x)

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

If int f(x)dx = F(x), f(x) is a continuous function,then int (f(x))/(F(x))dx equals

If f(x) is polynomaial function of degree n, prove that int e^x f(x) dx=e^x[f(x)-f'(x)+f''(x)-f'''(x)+......+(-1)^n f^n (x)] where f^n(x)=(d^nf)/(dx^n)