Home
Class 12
MATHS
Show that : "tan"^(-1)(1)/(4) +"tan"^(-1...

Show that : `"tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

Show that tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)