Home
Class 12
MATHS
Given that f(x)= {((1-cos4x)/(x^(2))",",...

Given that `f(x)= {((1-cos4x)/(x^(2))",","if "x lt 0),(a",","if "x =0),((sqrt(x))/(sqrt(16+sqrt(x))-4)",","if "x gt 0):}`
If f(x) is continuous at x=0 find the value of a.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and the right-hand limit at \( x = 0 \) are equal to \( f(0) \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{1 - \cos(4x)}{x^2} & \text{if } x < 0 \\ a & \text{if } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} & \text{if } x > 0 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit as \( x \to 0^- \) We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos(4x)}{x^2} \] Using the limit property: \[ \lim_{x \to 0} \frac{1 - \cos(ax)}{(ax)^2} = \frac{1}{2} \quad \text{for any constant } a \] we can rewrite our limit: \[ \lim_{x \to 0^-} \frac{1 - \cos(4x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos(4x)}{(4x)^2} \cdot 16 \] This gives us: \[ = 16 \cdot \frac{1}{2} = 8 \] ### Step 2: Calculate the Right-Hand Limit as \( x \to 0^+ \) Next, we find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} \] To simplify this limit, we can rationalize the denominator: \[ \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{(\sqrt{16 + \sqrt{x}} - 4)(\sqrt{16 + \sqrt{x}} + 4)} = \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{16 + \sqrt{x} - 16} \] This simplifies to: \[ \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{\sqrt{x}} = \lim_{x \to 0^+} (\sqrt{16 + \sqrt{x}} + 4) \] As \( x \to 0 \): \[ \sqrt{16 + \sqrt{x}} \to \sqrt{16} = 4 \] Thus: \[ \lim_{x \to 0^+} (\sqrt{16 + \sqrt{x}} + 4) = 4 + 4 = 8 \] ### Step 3: Set the Limits Equal to Each Other For continuity at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] This gives us: \[ 8 = a \] ### Conclusion Therefore, the value of \( a \) that makes \( f(x) \) continuous at \( x = 0 \) is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x =0 , then the value of k is

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

If f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2))sin^(-1)(1-{x}))/(sqrt(2) ({x} - {x}^(3)))",",x gt 0),(k",",x = 0),((A sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))",",x lt 0):} is continuous at x = 0, then the value of sin^(2) k + cos^(2) ((Api)/(sqrt(2))) , is..... (where {.} denotes fractional part of x).

Given that f(x) = xg (x)//|x| g(0) = g'(0)=0 and f(x) is continuous at x=0 then the value of f'(0)

f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

If f(x)={(36^x-9^x-4^x+1)/(sqrt(2)-sqrt(1+cosx)),x!=0 \ \ \ \k ,x=0 is continuous at x=0, then k equal to

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

Let f(x)={((alpha cotx)/x+beta/x^2 ,, 0<|x|lt=1),(1/3 ,, x=0):} . If f(x) is continuous at x=0 then the value of alpha^2+beta^2 is

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x) is continuous at x= 0 or not ?