Home
Class 12
MATHS
Evaluate : int " cosec"x dx...

Evaluate : `int " cosec"x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \csc x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \csc x \, dx \] ### Step 2: Multiply and Divide by \( \csc x - \cot x \) To simplify the integral, we multiply and divide by \( \csc x - \cot x \): \[ I = \int \csc x \cdot \frac{\csc x - \cot x}{\csc x - \cot x} \, dx \] This gives us: \[ I = \int \frac{\csc^2 x - \csc x \cot x}{\csc x - \cot x} \, dx \] ### Step 3: Substitution Let: \[ t = \csc x - \cot x \] Now, we need to find \( dt \): \[ dt = (-\csc x \cot x + \csc^2 x) \, dx \] This simplifies to: \[ dt = \csc^2 x - \csc x \cot x \, dx \] ### Step 4: Solve for \( dx \) From the expression for \( dt \), we can express \( dx \): \[ dx = \frac{dt}{\csc^2 x - \csc x \cot x} \] ### Step 5: Substitute Back into the Integral Now substituting back into the integral: \[ I = \int \frac{1}{t} \, dt \] ### Step 6: Integrate The integral of \( \frac{1}{t} \) is: \[ I = \ln |t| + C \] Substituting back for \( t \): \[ I = \ln |\csc x - \cot x| + C \] ### Final Result Thus, the final result for the integral \( \int \csc x \, dx \) is: \[ \int \csc x \, dx = \ln |\csc x - \cot x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

int " cosec"^(3) " x dx "

Evaluate int "cosec"^(4)x dx

Evaluate : int (1)/(" cosec x ") " dx "

int " cosec"^(4) 2x dx

Evaluate: int sqrt(1+cosec x) dx ,(0 < x < pi/2)

Evaluate: int(1)/(1+cosec x)dx

Evaluate: int2^x\ dx

Evaluate: int("cosec x")/(log tan(x/2)) dx

Evaluate int cosec^(2)x ln (cos x + sqrt(cos 2x))dx .

Evaluate: intsqrt(("cosec"x-cotx)/("cosec"x+cotx).(secx)/sqrt(1+2secx) dx