Home
Class 12
MATHS
Evaluate the integral as limit of sum: i...

Evaluate the integral as limit of sum: `int_(0)^(1) (e^(2x)-e^(x) +x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} (e^{2x} - e^{x} + x) \, dx \) as a limit of sums, we will first compute the integral using the Fundamental Theorem of Calculus and then express it in terms of a limit of sums. ### Step-by-step Solution: 1. **Set up the integral**: We want to evaluate the integral: \[ I = \int_{0}^{1} (e^{2x} - e^{x} + x) \, dx \] 2. **Integrate each term separately**: - The integral of \( e^{2x} \): \[ \int e^{2x} \, dx = \frac{e^{2x}}{2} \] - The integral of \( e^{x} \): \[ \int e^{x} \, dx = e^{x} \] - The integral of \( x \): \[ \int x \, dx = \frac{x^2}{2} \] 3. **Combine the integrals**: Therefore, we can write: \[ I = \left[ \frac{e^{2x}}{2} - e^{x} + \frac{x^2}{2} \right]_{0}^{1} \] 4. **Evaluate at the upper limit (x = 1)**: Substitute \( x = 1 \): \[ I = \left( \frac{e^{2 \cdot 1}}{2} - e^{1} + \frac{1^2}{2} \right) = \left( \frac{e^{2}}{2} - e + \frac{1}{2} \right) \] 5. **Evaluate at the lower limit (x = 0)**: Substitute \( x = 0 \): \[ I = \left( \frac{e^{2 \cdot 0}}{2} - e^{0} + \frac{0^2}{2} \right) = \left( \frac{1}{2} - 1 + 0 \right) = -\frac{1}{2} \] 6. **Combine the results**: Now, we combine the results from the upper and lower limits: \[ I = \left( \frac{e^{2}}{2} - e + \frac{1}{2} \right) - \left( -\frac{1}{2} \right) \] Simplifying this gives: \[ I = \frac{e^{2}}{2} - e + \frac{1}{2} + \frac{1}{2} = \frac{e^{2}}{2} - e + 1 \] ### Final Result: Thus, the value of the integral is: \[ I = \frac{e^{2}}{2} - e + 1 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate the following integrals as limit of sum: int_a^b e^x dx

Evaluate the following integrals as limit of sum: int_1^3(2x+3)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the definite integrals as limit of sums int_z^1x^2dx

Evaluate the following integrals as limit of sum: int_0^2e^x dx

Evaluate as limit of sums: int_0^1 e^(2-3x)dx

Evaluate the following integrals as limit of sum: int_0^2(x^2+1)dx

Evaluate the following integrals as limit of sum: int_1^4(x^2-x)dx

Evaluate the following integrals as limit of sum: int_0^2(x^2+4)dx