Home
Class 12
MATHS
Given that veca.vecb=0 and veca xx vecb=...

Given that `veca.vecb=0 and veca xx vecb=0`. What can you conclude about the vectors `veca and vecb`.

A

`veca bot vecb`

B

`veca||vecb`

C

`veca=0`

D

Either `|veca|=0 or |vecb|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions for the vectors \( \vec{a} \) and \( \vec{b} \): 1. **Given Conditions**: - \( \vec{a} \cdot \vec{b} = 0 \) - \( \vec{a} \times \vec{b} = 0 \) 2. **Understanding the Dot Product**: The dot product \( \vec{a} \cdot \vec{b} \) is defined as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \( \theta \) is the angle between the two vectors. Since \( \vec{a} \cdot \vec{b} = 0 \), we can conclude that: \[ |\vec{a}| |\vec{b}| \cos \theta = 0 \] This implies that either: - \( |\vec{a}| = 0 \) (i.e., \( \vec{a} \) is the zero vector) - \( |\vec{b}| = 0 \) (i.e., \( \vec{b} \) is the zero vector) - \( \cos \theta = 0 \) (i.e., \( \theta = 90^\circ \), meaning \( \vec{a} \) and \( \vec{b} \) are perpendicular) 3. **Understanding the Cross Product**: The cross product \( \vec{a} \times \vec{b} \) is defined as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Since \( \vec{a} \times \vec{b} = 0 \), we have: \[ |\vec{a}| |\vec{b}| \sin \theta = 0 \] This implies that either: - \( |\vec{a}| = 0 \) (i.e., \( \vec{a} \) is the zero vector) - \( |\vec{b}| = 0 \) (i.e., \( \vec{b} \) is the zero vector) - \( \sin \theta = 0 \) (i.e., \( \theta = 0^\circ \) or \( \theta = 180^\circ \), meaning \( \vec{a} \) and \( \vec{b} \) are parallel) 4. **Conclusion**: From the conditions derived from both the dot product and the cross product, we have: - From \( \vec{a} \cdot \vec{b} = 0 \): \( \vec{a} \) and \( \vec{b} \) are either perpendicular, or one of them is the zero vector. - From \( \vec{a} \times \vec{b} = 0 \): \( \vec{a} \) and \( \vec{b} \) are either parallel, or one of them is the zero vector. The only way for both conditions to hold true simultaneously is if at least one of the vectors is the zero vector. Therefore, we can conclude: \[ \text{Either } \vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be unit vector such that veca + vecb - vecc =0 . If the area of triangle formed by vectors veca and vecb is A, then what is the value of 4A^(2) ?

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 "if" vecc is a vector such that vecc -veca - 2vecb = 3(veca xx vecb) then find the value of vecc . Vecb .

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.vecb\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]((veca\'xxvecb\')+(vecb\'xxvecc \')+(vecc\'xxveca\'))= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then

The formula (veca + vecb)^(2)= (veca)^(2) + (vecb)^(2) + 2veca xx vecb valid for non zero vectors veca and vecb .

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then