Home
Class 12
MATHS
Find a vector of magnitude 9 units and p...

Find a vector of magnitude 9 units and perpendicular to the vectors
`veca=4hati-hatj+hatk and vecb= -2hati+hatj-2hatk`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a vector of magnitude 9 units that is perpendicular to the vectors \(\vec{a} = 4\hat{i} - \hat{j} + \hat{k}\) and \(\vec{b} = -2\hat{i} + \hat{j} - 2\hat{k}\), we can follow these steps: ### Step 1: Find the cross product of \(\vec{a}\) and \(\vec{b}\) The cross product \(\vec{a} \times \vec{b}\) gives us a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 1 \\ -2 & 1 & -2 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 1 \\ -2 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & -1 \\ -2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = (-1)(-2) - (1)(1) = 2 - 1 = 1\) 2. \(\begin{vmatrix} 4 & 1 \\ -2 & -2 \end{vmatrix} = (4)(-2) - (1)(-2) = -8 + 2 = -6\) 3. \(\begin{vmatrix} 4 & -1 \\ -2 & 1 \end{vmatrix} = (4)(1) - (-1)(-2) = 4 - 2 = 2\) Putting it all together: \[ \vec{a} \times \vec{b} = \hat{i}(1) - \hat{j}(-6) + \hat{k}(2) = \hat{i} + 6\hat{j} + 2\hat{k} \] ### Step 2: Find the magnitude of \(\vec{a} \times \vec{b}\) Now we calculate the magnitude of the vector \(\vec{c} = \hat{i} + 6\hat{j} + 2\hat{k}\): \[ |\vec{c}| = \sqrt{(1)^2 + (6)^2 + (2)^2} = \sqrt{1 + 36 + 4} = \sqrt{41} \] ### Step 3: Normalize the vector \(\vec{c}\) To find a unit vector in the direction of \(\vec{c}\): \[ \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{\hat{i} + 6\hat{j} + 2\hat{k}}{\sqrt{41}} \] ### Step 4: Scale the unit vector to get a magnitude of 9 To find a vector of magnitude 9 that is perpendicular to both \(\vec{a}\) and \(\vec{b}\): \[ \vec{d} = 9 \hat{c} = 9 \cdot \frac{\hat{i} + 6\hat{j} + 2\hat{k}}{\sqrt{41}} = \frac{9\hat{i} + 54\hat{j} + 18\hat{k}}{\sqrt{41}} \] ### Final Answer The required vector of magnitude 9 units that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is: \[ \vec{d} = \frac{9\hat{i} + 54\hat{j} + 18\hat{k}}{\sqrt{41}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos

Similar Questions

Explore conceptually related problems

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors " "veca=2hati+3hatj-hatk and vecb=hati-2hatj+hatk .

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

Find a vector whose magnitude is 3 units and which is perpendicular to the vectors veca and vecb where veca=3hati+hatj-4hatk and vecb=6hati+hatj-2hatk

Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

Find a unit vector perpendicular to each one of the vectors vec a =4hati -hatj +3hatk and vecb =3 hati +2hatj -hatk

Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

The number of vectors of unit length perpendicular to the vectors veca=2hati+hatj+2hatkandvecb=hatj+hatk is