Home
Class 12
MATHS
The number of unit vectors perpendicular...

The number of unit vectors perpendicular to the plane of vectors `veca=2hati-6hat j-3hatk` and `vecb=4hati+3hatj-hatk` is/are

A

1

B

2

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of unit vectors that are perpendicular to the plane defined by the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Calculate the Cross Product of Vectors \(\vec{a}\) and \(\vec{b}\) The cross product \(\vec{a} \times \vec{b}\) gives us a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). We can set up the determinant to find the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} = (-6)(-1) - (-3)(3) = 6 + 9 = 15 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} = (2)(-1) - (-3)(4) = -2 + 12 = 10 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} = (2)(3) - (-6)(4) = 6 + 24 = 30 \] Putting it all together, we have: \[ \vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} + 30\hat{k} \] ### Step 2: Find the Magnitude of the Cross Product Next, we calculate the magnitude of the cross product vector: \[ |\vec{a} \times \vec{b}| = \sqrt{15^2 + (-10)^2 + 30^2} = \sqrt{225 + 100 + 900} = \sqrt{1225} = 35 \] ### Step 3: Calculate the Unit Vector The unit vector \(\hat{n}\) in the direction of \(\vec{a} \times \vec{b}\) is given by: \[ \hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \] Substituting the values: \[ \hat{n} = \frac{15\hat{i} - 10\hat{j} + 30\hat{k}}{35} = \left(\frac{15}{35}\right)\hat{i} + \left(\frac{-10}{35}\right)\hat{j} + \left(\frac{30}{35}\right)\hat{k} \] Simplifying this gives: \[ \hat{n} = \frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k} \] ### Step 4: Determine the Number of Unit Vectors Since the unit vector can point in both directions (positive and negative), the two unit vectors perpendicular to the plane are: \[ \hat{n} = \frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k} \quad \text{and} \quad -\hat{n} = -\frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{6}{7}\hat{k} \] Thus, the number of unit vectors perpendicular to the plane of vectors \(\vec{a}\) and \(\vec{b}\) is **2**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

Find a unit vector perpendicular to each one of the vectors vec a =4hati -hatj +3hatk and vecb =3 hati +2hatj -hatk

Knowledge Check

  • The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

    A
    `(2)/(3)`
    B
    `(1)/(3)`
    C
    2
    D
    `sqrt(6)`
  • Similar Questions

    Explore conceptually related problems

    Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

    Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

    Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=4hati-hatj+3hatk and vecb=-2hati+hatj-hatk

    The unit vector parallel to the resultant of the vectors vecA=4hati+3hatj+6hatk and vecB=-hati+3hatj-8hatk is

    Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=hati-hatj and vecb=hatj+hatk

    What is the unit vector perpendicular to the following vectors 2hati+2hatj-hatk and 6hati-3hatj+2hatk

    Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .