Home
Class 12
MATHS
If veca , vec b all are unit vector, t...

If ` veca , vec b ` all are unit vector, then the greatest value of ` |veca +vecb| + |veca-vecb|` is

A

`2 sqrt2`

B

sqrt2

C

2

D

4sqrt2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the greatest value of \( |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| \) where \( \vec{a} \) and \( \vec{b} \) are unit vectors, we can follow these steps: ### Step 1: Define the angle between the vectors Let \( \theta \) be the angle between the unit vectors \( \vec{a} \) and \( \vec{b} \). Since both vectors are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] ### Step 2: Use the dot product to express \( |\vec{a} + \vec{b}|^2 \) Using the formula for the square of the magnitude of the sum of two vectors, we have: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 |\vec{a}| |\vec{b}| \cos \theta \] Substituting the magnitudes: \[ |\vec{a} + \vec{b}|^2 = 1^2 + 1^2 + 2 \cdot 1 \cdot 1 \cdot \cos \theta = 2 + 2 \cos \theta \] Thus, \[ |\vec{a} + \vec{b}| = \sqrt{2 + 2 \cos \theta} \] ### Step 3: Use the dot product to express \( |\vec{a} - \vec{b}|^2 \) Similarly, for the difference of the vectors: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| \cos \theta \] Substituting the magnitudes: \[ |\vec{a} - \vec{b}|^2 = 1^2 + 1^2 - 2 \cdot 1 \cdot 1 \cdot \cos \theta = 2 - 2 \cos \theta \] Thus, \[ |\vec{a} - \vec{b}| = \sqrt{2 - 2 \cos \theta} \] ### Step 4: Combine the two magnitudes Now we can add the two magnitudes: \[ |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| = \sqrt{2 + 2 \cos \theta} + \sqrt{2 - 2 \cos \theta} \] ### Step 5: Simplify the expression Factor out \( \sqrt{2} \): \[ = \sqrt{2} \left( \sqrt{1 + \cos \theta} + \sqrt{1 - \cos \theta} \right) \] Using the identities \( 1 + \cos \theta = 2 \cos^2(\theta/2) \) and \( 1 - \cos \theta = 2 \sin^2(\theta/2) \): \[ = \sqrt{2} \left( \sqrt{2 \cos^2(\theta/2)} + \sqrt{2 \sin^2(\theta/2)} \right) \] \[ = \sqrt{2} \cdot \sqrt{2} \left( \cos(\theta/2) + \sin(\theta/2) \right) = 2 \left( \cos(\theta/2) + \sin(\theta/2) \right) \] ### Step 6: Find the maximum value The expression \( \cos(\theta/2) + \sin(\theta/2) \) achieves its maximum value of \( \sqrt{2} \) when \( \theta/2 = \frac{\pi}{4} \) or \( \theta = \frac{\pi}{2} \). Therefore: \[ \text{Maximum value} = 2 \cdot \sqrt{2} = 2\sqrt{2} \] ### Final Answer The greatest value of \( |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| \) is \( 2\sqrt{2} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

Let 2veca = vecb xx vecc + 2vecb where veca, vecb and vecc are three unit vectors, then sum of all possible values of |3veca + 4vecb + 5vecc| is

If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca and vecb are unit vectors, then which of the following values of veca.vecb is not possible ?

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is