Home
Class 12
MATHS
If vec a =hati +3hatj , vecb = 2hati -h...

If ` vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk ` are coplanar then find the value of m.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( m \) such that the vectors \( \vec{a} = \hat{i} + 3\hat{j} \), \( \vec{b} = 2\hat{i} - \hat{j} - \hat{k} \), and \( \vec{c} = m\hat{i} + 7\hat{j} + 3\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. This leads us to the determinant of the matrix formed by the coefficients of the vectors. ### Step-by-step solution: 1. **Write the vectors in component form:** \[ \vec{a} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} m \\ 7 \\ 3 \end{pmatrix} \] 2. **Set up the determinant for the scalar triple product:** The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} 1 & 3 & 0 \\ 2 & -1 & -1 \\ m & 7 & 3 \end{vmatrix} = 0 \] 3. **Calculate the determinant:** Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{Det} = 1 \cdot \begin{vmatrix} -1 & -1 \\ 7 & 3 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & -1 \\ m & 3 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -1 \\ m & 7 \end{vmatrix} \] - Calculate the first \( 2 \times 2 \) determinant: \[ \begin{vmatrix} -1 & -1 \\ 7 & 3 \end{vmatrix} = (-1)(3) - (-1)(7) = -3 + 7 = 4 \] - Calculate the second \( 2 \times 2 \) determinant: \[ \begin{vmatrix} 2 & -1 \\ m & 3 \end{vmatrix} = (2)(3) - (-1)(m) = 6 + m = 6 + m \] - Substitute back into the determinant: \[ \text{Det} = 1 \cdot 4 - 3 \cdot (6 + m) = 4 - 18 - 3m = -14 - 3m \] 4. **Set the determinant to zero:** \[ -14 - 3m = 0 \] 5. **Solve for \( m \):** \[ -3m = 14 \implies m = -\frac{14}{3} \] Thus, the value of \( m \) is \( -\frac{14}{3} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=