Home
Class 12
MATHS
If veca xx vec b xx vec c ne 0 , prove...

If ` veca xx vec b xx vec c ne 0 , ` prove that ` vec a +vec c ` is parallel to ` vec b. ` Hence express `vec a + vec c ` in terms of ` vec b. `

Text Solution

Verified by Experts

The correct Answer is:
` vec a +vec c = lambda vec b `
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If vec a\ xx\ vec b=\ vec c\ xx\ vec d\ and vec a\ xx\ vec c=\ vec b\ xx vec d show that vec a- vec d is parallel to vec b- vec c , where vec a!= vec d and vec b!= vec c

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a