Home
Class 12
MATHS
Show that the line whose vector equation...

Show that the line whose vector equation is ` vec r=(2 hat i-2 hat j+3)+lambda( hat i- hat j+4 hat k)` is parallel to the plane whose vector equation ` vec r( hat i+5 hat j+ hat k)=5` . Also, find the distance between them.

Text Solution

Verified by Experts

The correct Answer is:
1.92 units
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Show that the line whose vector equation is vec rdot(2 hat i+5 hat j-7 hat k)+lambda( hat i+3 hat j+4 hat k) is parallel to the plane whose vector equation is vec rdot( hat i+ hat j- hat k)=7 . Also find the distance between them.

Show that the line vec r= hat i+ hat j+lambda(2 hat i+ hat j+4 hat k) is parallel to the plane vec r dot ((-2 hat i+ hat k)=5). Also, find the distance between the line and the plane.

Show that the plane whose vector equation is vec rdot( hat i+2 hat j- hat k)=1. and the line whose vector equation is vec r=(- hat i+ hat j+ hat k)+lambda(2 hat i+ hat j+4 hat k) are parallel. Also, find the distance between them.

Show that the plane whose vector equation is vec r*( hat i+2 hat j= hat k)=3 contains the line whose vector equation is vec r*( hat i+ hat j)+lambda(2 hat i+ hat j+4 hat k)dot

Find the shortest distance between the lines whose vector equations are vec r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) and vec r=2 hat i+ hat j- hat k+mu(3 hat i-5 hat j+2 hat k)dot

Find the angle between the line vec r = (2 hat i-hat j +3 hat k)+ lambda (3 hat i-hat j+2 hat k ) and the plane vec r.(hat i + hat j + hat k)=3

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot( hat i+5 hat j+ hat k)=5.

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r.(2 hat i- hat j+ hat k)=4.

Find the Cartesian form of equation of a plane whose vector equation is : vec rdot((- hat i+ hat j+2 hat k)=9

Find the shortest distance between the lines whose vector equations are: vec r=2 hat i- hat j- hat k+lambda(2 hat i-5 hat j+2 hat k)a n d\ , vec r= hat i+2 hat j+ hat k+ mu( hat i- hat j+ hat k)dot