Home
Class 12
MATHS
Using integration ,find the area of the ...

Using integration ,find the area of the region ` {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 } `

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( y^2 \leq 4x \) and \( 4x^2 + 4y^2 \leq 9 \), we will follow these steps: ### Step 1: Identify the curves 1. The first inequality \( y^2 \leq 4x \) represents a parabola that opens to the right. 2. The second inequality \( 4x^2 + 4y^2 \leq 9 \) can be rewritten as \( x^2 + y^2 \leq \frac{9}{4} \), which represents a circle centered at the origin with a radius of \( \frac{3}{2} \). ### Step 2: Find the points of intersection To find the area of the region, we first need to determine the points where these two curves intersect. We will set \( y^2 = 4x \) into the equation of the circle. Substituting \( y^2 \) into the circle's equation: \[ 4x^2 + 4(4x) \leq 9 \] This simplifies to: \[ 4x^2 + 16x - 9 = 0 \] Dividing through by 4 gives: \[ x^2 + 4x - \frac{9}{4} = 0 \] ### Step 3: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 4, c = -\frac{9}{4} \): \[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot -\frac{9}{4}}}{2 \cdot 1} \] \[ x = \frac{-4 \pm \sqrt{16 + 9}}{2} \] \[ x = \frac{-4 \pm 5}{2} \] Calculating the roots: 1. \( x = \frac{1}{2} \) (positive root) 2. \( x = -\frac{9}{2} \) (not relevant for our area calculation) ### Step 4: Determine the corresponding y-values Using \( y^2 = 4x \): For \( x = \frac{1}{2} \): \[ y^2 = 4 \cdot \frac{1}{2} = 2 \implies y = \pm \sqrt{2} \] ### Step 5: Set up the integrals The area can be found by integrating the upper curve minus the lower curve. The upper curve is given by the circle and the lower curve by the parabola. 1. From \( x = 0 \) to \( x = \frac{1}{2} \), the upper curve is \( y = 2\sqrt{x} \). 2. From \( x = \frac{1}{2} \) to \( x = \frac{3}{2} \), the upper curve is from the circle \( y = \sqrt{\frac{9}{4} - x^2} \). ### Step 6: Calculate the area The total area \( A \) is given by: \[ A = 2 \left( \int_0^{\frac{1}{2}} 2\sqrt{x} \, dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{\frac{9}{4} - x^2} \, dx \right) \] ### Step 7: Evaluate the integrals 1. For the first integral: \[ \int 2\sqrt{x} \, dx = \frac{4}{3} x^{3/2} \bigg|_0^{\frac{1}{2}} = \frac{4}{3} \left( \frac{1}{2} \right)^{3/2} = \frac{4}{3} \cdot \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{3} \] 2. For the second integral, we use the formula for the area under a semicircle: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left( \frac{x}{a} \right) \] Here, \( a = \frac{3}{2} \): \[ \text{Evaluate from } \frac{1}{2} \text{ to } \frac{3}{2} \] ### Step 8: Combine results Finally, we combine the results of the integrals to find the total area.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

Find the area of the region {(x , y): y^2lt=4x ,4x^2+4y^2lt=9}

Using integration, find the area of the following region : {(x, y) : x^(2) + y^(2) lt 1 le x + y}

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

The area of the region R={(x,y)//x^(2)le y le x} is

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Using integration find the area of the region "{"(x , y")":x^2+y^2lt=2a x ,y^2geqa x ,x ,ygeq0} .

Find the area of the region {(x , y)\ : x^2+y^2lt=4,\ x+y\ geq2}

Find the area of the region {(x , y)\ : x^2+y^2lt=4,\ x+y\ geq2}