Home
Class 12
MATHS
Indefinite Integration...

Indefinite Integration

Promotional Banner

Similar Questions

Explore conceptually related problems

Properties Of Indefinite Integral

Geometrical Interpretation Of Indefinite Integral|Standard Results|Exercise Questions|OMR

Geometrical Interpretation Of Indefinite Integral|Standard Results|Exercise Questions|OMR

Some Properties Of Indefinite Integrals|Exercise Questions |OMR

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

Find the indefinite integral int(1)/(cos(x-a)cos(x-b))dx

Geometrical interpretation of indefinite integral

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(3)(x+pi)=sin^(2)x for all real x. A) Statement-1: True , statement-2 is true, Statement -2 is not a correct explanation for statement -1 c) Statement-1 is True, Statement -2 is False. D) Statement-1 is False, Statement-2 is True.

Let f(x) be an indefinite integral of sin^(2)x . Consider the following statements : Statements 1. The function f(x) satisfies f(x+pi)=f(x) for all real x. 2. Sin^(2)(x+pi)=sin^(2)x for all real x. Which one of the following is correct in respect of the above statements ?

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x. (A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I. (B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I. (C) Statement I is true, Statement II is false. (D) Statement I is false, Statement II is ture.