Home
Class 11
MATHS
If n is be a positive integer,then (1+i)...

If n is be a positive integer,then `(1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)),` where k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer,then (1+i)^(n)+(1-1)^(n) is equal to

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

If n is an integer then show that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

Prove that (a)(1+i)^(n)+(1-i)^(n)=2^((n+2)/(2))*cos((n pi)/(4)) where n is a positive integer. (b) (1+i sqrt(3))^(n)+(1-i sqrt(3)^(n)=2^(n+1)cos((n pi)/(3)), where n is a positive integer

If n is any positive integer,write the value of (i^(4n+1)-i^(4n-1))/(2)

If n is a positive integer and (1+i)^(2n)=k cos(n pi/2) , then the value of k is

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

For a positive integer n, find the value of (1-i)^(n)(1-(1)/(i))^(n)

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n)?