Home
Class 12
MATHS
x=sqrt(sin 2t),y=sqrt(cos 2 t)...

`x=sqrt(sin 2t),y=sqrt(cos 2 t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

Find (dy)/(dx) if: x=a(cos t+(1)/(2)ln tan^(2)(t)/(2)) and y=a sin t.x=sin t sqrt(cos2t) and y=cost sqrt(cos2t)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

Which one of the following equation represent parametric equation to a parabolic curve? x=3cos t;y=4sin tx^(2)-2=2cos t;y=4cos^(2)(t)/(2)sqrt(x)=tan t;sqrt(y)=sec tx=sqrt(1-sin t;)y=sin(t)/(2)+cos(t)/(2)

If quad sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t),a>0 and |t|<1 then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t)a>0 and -1

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t))