Home
Class 12
MATHS
Integrate f(x)=(e^(x)-e^(-x))/(e^(x)+e^(...

Integrate `f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate 1. (e^(x)-e^(-x))/(e^(x)+e^(-x)) 2. (10x^(9)+10^(x).log_(e)10)/(10^(x)+x^(10))

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 is given by

The inverse of the function f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)), is

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))-1 is

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

If the function of f:R rarr A is given by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)) is surjection,find A

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then