Home
Class 12
MATHS
int[1/logx-1/(logx)^2]dx=...

`int[1/logx-1/(logx)^2]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(1)/(xlogx(2+logx))dx=

int (log x)/(1+logx)^2 dx

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx