Home
Class 7
MATHS
Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2...

Simplify : `6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 6a^2 + 3ab + 5b^2 - 2ab - b^2 + 2a^2 + 4ab + 2b^2 - a^2 \), we will follow these steps: ### Step 1: Group like terms We will group the terms based on their types: \( a^2 \), \( ab \), and \( b^2 \). - **Terms with \( a^2 \)**: \( 6a^2 + 2a^2 - a^2 \) - **Terms with \( ab \)**: \( 3ab - 2ab + 4ab \) - **Terms with \( b^2 \)**: \( 5b^2 - b^2 + 2b^2 \) ### Step 2: Simplify each group Now, we will simplify each group separately. 1. **For \( a^2 \)**: \[ 6a^2 + 2a^2 - a^2 = (6 + 2 - 1)a^2 = 7a^2 \] 2. **For \( ab \)**: \[ 3ab - 2ab + 4ab = (3 - 2 + 4)ab = 5ab \] 3. **For \( b^2 \)**: \[ 5b^2 - b^2 + 2b^2 = (5 - 1 + 2)b^2 = 6b^2 \] ### Step 3: Combine the simplified groups Now, we combine all the simplified groups together: \[ 7a^2 + 5ab + 6b^2 \] ### Final Answer The simplified expression is: \[ \boxed{7a^2 + 5ab + 6b^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise EXERCISE 13A|39 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise EXERCISE 13B |37 Videos
  • CONGRUENCE

    ICSE|Exercise EXERCISE 21|23 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant : Prove that |(a^(2), 2ab, b^(2)),(b^(2),a^(2),2ab),(2ab,b^(2),a^(2))| = (a^(3) + b^(3))^(2)

Multiply : 2a^(3) - 3a^(2)b and -(1)/(2)ab^(2)

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x+y-z

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x-y+z

Multiply 8a^(2)b - 3ab + 5b^(2) by 6ab.

Subtract : a^(2) + ab + b^(2) from 4a^(2) - 3ab + 2b^(2)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

Remove the brackets and simplify : (a^(2)+b^(2) +2ab) -(a^(2)+b^(2)- 2ab)

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

ICSE-ALGEBRAIC EXPRESSIONS-EXERCISE 13B
  1. Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2).

    Text Solution

    |

  2. Add the following expressions: 2x^(2), -5x^(2) - x^(2), 6x^(2)

    Text Solution

    |

  3. Add the following expressions: x^(2)-2xy+3y^(2), 5y^(2)+3xy-6x^(2)

    Text Solution

    |

  4. Add the following expressions: 2x+9y-7z, 3y+z-3x, 3z-4y-x

    Text Solution

    |

  5. Add the following expressions: 2ab+3bc-5ca, 4bc-3ab+7ca, 2ca-ab-5bc

    Text Solution

    |

  6. Add the following expressions: 3x^(3)+2x^(2)-6x+3, 2x^(3)-3x^(2)-x-...

    Text Solution

    |

  7. Add the following expressions: 3n^(2)+5mn-6m^(2), 2m^(2)-3mn -4n^(...

    Text Solution

    |

  8. Add the following expressions: 3z^(3)-z^(2)+5, 1-2z+z^(2), 3+2z-z^(...

    Text Solution

    |

  9. Simplify: 5x+3y-8z+2y-3x+5z+z-7y-2x

    Text Solution

    |

  10. Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

    Text Solution

    |

  11. Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

    Text Solution

    |

  12. Simplify: 2-3z^(2)+5yz+7y^(2)-8+z^(2)-6yz-9y^(2)+1-2z^(2)-2yz-y^(2)

    Text Solution

    |

  13. Simplify: 2m-3n+5p+2m+n-2p-3m-4n+p

    Text Solution

    |

  14. Two two adjacent sides of a rectangel are 3a-b and 6b-a. Find its peri...

    Text Solution

    |

  15. Find the perimeter of a triangle whose sides are 2y+3z, z-y, 4y-2z.

    Text Solution

    |

  16. Subtract : 3a-2b +4c from 5a-3b-5c

    Text Solution

    |

  17. Subtract : 5x^(2)-3xy -7y^(2) from 3x^(2)-xy-2y^(2)

    Text Solution

    |

  18. Subtract : 3p^(3)-5p^(2)q from q^(2)+p^(2)q-4p^(3)

    Text Solution

    |

  19. Subtract : ab-bc-ca from 3ab +2bc-4ca

    Text Solution

    |

  20. Subtract : 3z^(2)-2z^(2)+7z -8 from 8-z-z^(2)

    Text Solution

    |

  21. Subtract : 2abc-a^(2)-b^(2) from b^(2)+a^(2)-2abc

    Text Solution

    |