Home
Class 11
MATHS
Let a(1), a(2), a(3)... be a sequance of...

Let `a_(1), a_(2), a_(3)...` be a sequance of positive integers in arithmetic progression with common difference 2. Also let `b_(1),b_(2), b_(3)......` be a sequences of posotive intergers in geometric progression with commo ratio 2. If `a_(1)=b_(1)=c_(2)`. then the number of all possible values of c, for which the equality.
`2(a_(1)+a_(2).+.....+a_(n))=b_(1)+b_(2)+....+b_(n)` holes for same positive integer n, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1), a_(2), a_(3) be three positive numbers which are in geometric progression with common ratio r. The inequality a_(3) gt a_(2)+2a_(1) holds true if r is equal to

Let a_(1), a_(2), a_(3).... and b_(1), b_(2), b_(3)... be arithmetic progression such that a_(1) = 25, b_(1) = 75 and a_(100) + b_(100) = 100 . Then

Let a_(1),a_(2),a_(3)..... be an arithmetic progression and b_(1),b_(2),b_(3)...... be a geometric progression.The sequence c_(1),c_(2),c_(3),... is such that c_(n)=a_(n)+b_(n)AA n in N. suppose c_(1)=1.c_(2)=4.c_(3)=15 and c_(4)=2. The common ratio of geometric progression is equal to

If a_(1),a_(2),a_(3),...a_(n) are positive real numbers whose product is a fixed number c, then the minimum value of a_(1)+a_(2)+....+a_(n-1)+2a_(n) is

Let a_(1),a_(2),a_(3), . . . be a harmonic progression with a_(1)=5anda_(20)=25 . The least positive integer n for which a_(n)lt0 , is

If a_1,a_2,a_3,....a_n and b_1,b_2,b_3,....b_n are two arithematic progression with common difference of 2nd is two more than that of first and b_(100)=a_(70),a_(100)=-399,a_(40)=-159 then the value of b_1 is

Let a_(1),a_(2),a_(3),... be in harmonic progression with a_(1)=5anda_(20)=25. The least positive integer n for which a_(n)<0 a.22 b.23 c.24 d.25

Let a_(1), a_(2) ...be positive real numbers in geometric progression. For n, if A_(n), G_(n), H_(n) are respectively the arithmetic mean, geometric mean and harmonic mean of a_(1), a_(2),..., a_(n) . Then, find an expression for the geometric mean of G_(1), G_(2),...,G_(n) in terms of A_(1), A_(2),...,A_(n), H_(1), H_(2),..., H_(n)