Home
Class 14
MATHS
Convert it 63^(@) 14'51" into radian ....

Convert it `63^(@) 14'51"` into radian .

Text Solution

AI Generated Solution

The correct Answer is:
To convert the angle \( 63^\circ 14' 51'' \) into radians, we will follow these steps: ### Step 1: Convert minutes and seconds to degrees 1. **Convert minutes to degrees**: \[ 14' = \frac{14}{60} \text{ degrees} \] 2. **Convert seconds to degrees**: \[ 51'' = \frac{51}{3600} \text{ degrees} \] ### Step 2: Combine all parts into degrees Now, we can express the entire angle in degrees: \[ \text{Total degrees} = 63 + \frac{14}{60} + \frac{51}{3600} \] ### Step 3: Find a common denominator The common denominator for \( 60 \) and \( 3600 \) is \( 3600 \). We will convert each term: 1. **Convert \( 63 \) degrees**: \[ 63 = \frac{63 \times 3600}{3600} = \frac{226800}{3600} \] 2. **Convert \( \frac{14}{60} \) degrees**: \[ \frac{14}{60} = \frac{14 \times 60}{3600} = \frac{840}{3600} \] 3. **Convert \( \frac{51}{3600} \) degrees**: \[ \frac{51}{3600} = \frac{51}{3600} \] ### Step 4: Add all parts together Now, we can add them: \[ \text{Total degrees} = \frac{226800 + 840 + 51}{3600} = \frac{227691}{3600} \] ### Step 5: Convert degrees to radians To convert degrees to radians, we use the formula: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] Substituting our total degrees: \[ \text{radians} = \frac{227691}{3600} \times \frac{\pi}{180} \] ### Step 6: Simplify the expression 1. **Multiply the fractions**: \[ \text{radians} = \frac{227691 \pi}{3600 \times 180} \] 2. **Calculate \( 3600 \times 180 \)**: \[ 3600 \times 180 = 648000 \] 3. **Final expression**: \[ \text{radians} = \frac{227691 \pi}{648000} \] ### Step 7: Simplify further by finding common factors To simplify \( \frac{227691}{648000} \): 1. **Find GCD**: The GCD of \( 227691 \) and \( 648000 \) is \( 9 \). 2. **Divide both by \( 9 \)**: \[ \frac{227691 \div 9}{648000 \div 9} = \frac{25299 \pi}{72000} \] Thus, the final answer is: \[ \text{radians} = \frac{25299 \pi}{72000} \]
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|158 Videos
  • LCM & HCF

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |140 Videos

Similar Questions

Explore conceptually related problems

Convert it 47^(@)20 ' into radian.

Convert 40^(@)21' into radian measure.

Convert 40^(@), 20^(') into radians.

Convert 40^(@)20' into radian measure.

Convert 60^(@) angle into radian.

Define Radian.

Convert 1^(@) and 1' to radians.

Convert 1^(@)" and "1' to radians.

Convert 10^(@) into radians.

Convert 60^o10'20'' into radian.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-GEOMETRY TRIANGLES-QUESTIONS
  1. If (5y+62)^(@), (22^(@)+y) are supplementary, find y :

    Text Solution

    |

  2. Convert it 47^(@)20' into radian.

    Text Solution

    |

  3. Convert it 63^(@) 14'51" into radian .

    Text Solution

    |

  4. In the figure AB||CD, angle ABE=100^(@). Find angleCDE:

    Text Solution

    |

  5. In the following figure, if PQ || RS, angle MXQ=135^(@) and angle MYR=...

    Text Solution

    |

  6. In a figure , AB is a straight line , Find (x+y):

    Text Solution

    |

  7. In a figure AB|\|DE, angle ABC=67^(@) and angle EDC=23^(@) . Find angl...

    Text Solution

    |

  8. In a figure AB|\| CD, find x^(@):

    Text Solution

    |

  9. In the given fig. AB|\|CD. Find the value of x.

    Text Solution

    |

  10. In the figure , AB|\|CD and PQ, QR intersect AB and CD both at E, F G ...

    Text Solution

    |

  11. In a Delta ABC, angle A+ angle B =145^(@), angle C+2angleB =180^(@) fi...

    Text Solution

    |

  12. In the following fig. AD=BD=AC and angle CAF=81^(@), then find angle A...

    Text Solution

    |

  13. In a Delta ABD, AB=BC=CD & AD=BD. Find angle ADB.

    Text Solution

    |

  14. In a triangle ABC, angle B=angleC=78^(@). D & E are two points on side...

    Text Solution

    |

  15. In triangle ABC, angleA is equal to 120^@ . There is a point D inside...

    Text Solution

    |

  16. In a triangle DEF, points A, B, and C are C are taken on DE, DF and EF...

    Text Solution

    |

  17. I is the incentre of Delta ABC, angle ABC=60^(@) and angle ACB=50^(@)....

    Text Solution

    |

  18. In a Delta ABC, CD is the angle bisector of interior angle C. Which me...

    Text Solution

    |

  19. In a DeltaABC, angleA=60^@ , AB = 3 cm , AC = 4 cm .Find the length o...

    Text Solution

    |

  20. In a Delta ABC , angle A=120^(@), AB=20 cm, AC =30 cm find the angle ...

    Text Solution

    |